ddosanov777
08.04.2021 04:46
Алгебра
Есть ответ 👍

#99-100. Объясните тупому мне, как вынести из под корня/внести под корень, если есть определенное условие (например, а>0 и т.д.). Мне нужно именно ОБЪЯСНЕНИЕ, ведь не понимаю принцип и постоянно теряю или не ставлю "минус" разобрать так каждый пример, соответственно, (НО ГЛАВНОЕ - ПОЯСНЕНИЯ).​

205
438
Посмотреть ответы 2

Ответы на вопрос:

Koteekanuha
4,7(33 оценок)

99)   Правило:  \boxed{\ \sqrt{a^2}=|a|\ \ \ ,\ \ \ \sqrt[2n]{a^{2n}}=|a|\ }   .

При извлечении квадратного корня или корня чётной степени ( 2n - обозначение чётного числа ) из  а²  (или  a^{2n} ) надо не забыть поставить модуль, ведь сам корень чётной степени может быть только неотрицательным . А модуль любого выражения тоже неотрицателен . Причём, если выражение под модулем неотрицательно, то модуль равен самому этому выражению. Если выражение под модулем отрицательно, то модуль равен этому выражению, взятому с противоположным знаком.

             |a|=\left\{\begin{array}{l}a\ ,\ esli\ a\geq 0\ ,\\-a\ ,\ esli\ a

Например,  |\underbrace{3}_{0}|=3\ \ ,\ \ \ |\underbrace{-3}_{  .  Как видим, в любом

случае получаем модуль, равный неотрицательному числу .

1)\ \ a\geq 0\ \ ,\ \ \sqrt{8a^5}=\sqrt{4\cdot a^4\cdot 2a}=\sqrt4\cdot \sqrt{(a^2)^2}\cdot \sqrt{2a}=2\cdot |\underbrace{a^2}_{\geq 0}|\cdot \sqrt{2a}==2\cdot a^2\cdot \sqrt{2a}

2)\ \ b\leq 0\ \ ,\ \ \sqrt{\dfrac{2}{9}\, b^2}=\dfrac{\sqrt2}{\sqrt9}\cdot \sqrt{b^2}=\dfrac{\sqrt2}{3}\cdot |\underbrace{b}_{\leq 0}|= \dfrac{\sqrt2}{3}\cdot (-b)=-\dfrac{\sqrt2}{3}\cdot b3)\ \ a

4)\ \ a0\ ,\ \ \ \sqrt{0,32a^2b^3}=\sqrt{0,16a^2b^2\cdot 2b}=0,4\cdot |\underbrace{a}_{0}|\cdot \sqrt{2b}==0,4\cdot (-a)\cdot b\cdot \sqrt{2b}=-0,4ab\, \sqrt{2b}

5)\ \ a

P.S.  Обратите внимание, что в 5 примере  b<0 , но под модулем записан  b² , который несмотря на отрицательное  b  всё равно будет положительным, и тогда   |b^2|=b^2 .

В 6 примере, так как  b≤0 , нечётная степень b тоже будет неположительной, тогда  если   b^3\leq 0\ \ \to \ \ |b^3|=-b^3 .

100)  Если  a\geq 0  ,  то   a=\sqrt{a^2}\ \ ,\ \ a=\sqrt[2n]{a^{2n}}  .

Если  a  , то   a=-\sqrt{a^2}\ \ ,\ \ a=-\sqrt[2n]{a^{2n}}  .

1)\ \ x0\ ,\ \ x\sqrt2=\sqrt{x^2}\cdot \sqrt{2}=\sqrt{2x^2}2)\ \ x0}\cdot \ b\cdot \sqrt{b}=\sqrt{(a^2)^2\cdot b^2\cdot b}=\sqrt{a^4\, b^3}

6)\ \ a

Заметь, что все выражения под знаком квадратного корня или корня чётной степени неотрицательны ! И когда мы внесли под корень множители, получившиеся выражения должны быть неотрицательными .

Например, в 6 примере:  

a0\ \ ;\ \ b\leq 0\ \ \to \ \ b^2\geq 0\ \ ;\ \ b\leq 0\ \ \to \ \ (-b)\geq 0\ \ ;togda\ \ a^6\, b^2\, (-b)=-a^6b^3\geq 0  

Eva27092006
4,8(10 оценок)

a≤1⇒решений нет; a> 1⇒    x\in\left[0;\dfrac{(a-1)^2}{4}\right).

Объяснение:

Левая часть неравенства неотрицательна, поэтому при a≤0 решений нет.

Пусть a>0. Рассмотрим функцию f(x)=\sqrt{x+a}+\sqrt{x}. Это возрастающая функция на своей области определения x\in [0;+\infty).

Если a\in(0;1],  f(0)=\sqrt{a} \ge a, а тогда в силу возрастания f(x)≥a на области определения, поэтому при таких a решений нет.

Пусть a>1. В этом случае f(0)=\sqrt{a} < a, и нам нужно поймать момент, когда f(x) станет равен a. Итак, решаем уравнение \sqrt{x+a}+\sqrt{x}=a.

Обозначим \sqrt{x+a}=p 0; \ \sqrt{x}=q\ge 0.  Поскольку p²-q²=a, уравнение равносильно системе \left \{ {{p+q=a} \atop {p^2-q^2=a}} \right. \Leftrightarrow \left \{ {{p+q=a} \atop {(p-q)(p+q)=a}} \right.\Leftrightarrow \left \{ {{p+q=a} \atop {p-q=1}} \right.\Leftrightarrow \left \{ {{p=\frac{a+1}{2}} \atop {q=\frac{a-1}{2}}} \right.\Leftrightarrow \left \{ {{\sqrt{x+a}=\frac{a+1}{2}} \atop {\sqrt{x}=\frac{a-1}{2}}} \right.\Leftrightarrow

\Leftrightarrow \left \{ {{x+a=\frac{(a+1)^2}{4}} \atop {x=\frac{(a-1)^2}{4}}} \right.\Leftrightarrow x=\dfrac{(a-1)^2}{4}. Напомним еще раз, что функция f(x) возрастающая, поэтому слева от найденной точки функция меньше a, справа - больше a. Не забываем и про область определения.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS