amira061
08.05.2021 09:46
Алгебра
Есть ответ 👍

1. дана функция f(x) = x^3 + 3x^2 - 2x -2. напишите уравнение касательной к графику функции y=f(x), параллельной прямой
y= -2x + 1.

2. дана функция f(х) = х^2-2x-1. напишите уравнение касательной к графику функции у = f(х), проходящей через точку а(0; -5).

255
485
Посмотреть ответы 2

Ответы на вопрос:

nikanor020499
4,7(34 оценок)

1. касательная параллельна графику y = -2x + 1, k = -2 ⇒ f'(x₀) = -2

f(x) = x³ + 3x² - 2x -2

f'(x) = 3x² + 6x - 2

f'(x₀) = 3x₀² + 6x₀ - 2 = -2

3x₀² + 6x₀ - 2 = -2

3x₀² + 6x₀ = 0

x₀(3x₀ + 6) = 0

x₀ = 0 или x₀ = -2

y₁кас = kx + b

y₁кас = -2x + b

f(0) = -2. подставим точку (0; -2) в уравнение касательной:

-2 = -2*0 + b

b = -2

y₁кас = -2x - 2

y₂кас = kx + b

y₂кас = -2x + b

f(-2) = 6. подставим точку (-2; 6) в уравнение касательной:

6 = -2*(-2) + b

b = 2

y₂кас = -2x + 2

2. f(х) = х² - 2x - 1

f'(x) = 2x - 2

f'(x₀) = 2x₀ - 2 = k

f(x₀) = х₀² - 2x₀ - 1

подставим точку (x₀; х₀² - 2x₀ - 1) в уравнение касательной y = (2x₀ - 2)x + b:

х₀² - 2x₀ - 1 = (2x₀ - 2)x₀ + b

х₀² - 2x₀ - 1 = 2x₀² - 2x₀ + b

b = -x₀² - 1

yкас = (2x₀ - 2)x - x₀² - 1. этому графику принадлежит точка a(0; -5). подставим её координаты в уравнение касательной:

-5 = (2x₀ - 2)*0 - x₀² - 1

-5 = - x₀² - 1

x₀² = 4

x₀ = -2 или x₀ = 2

yкас = (2x₀ - 2)x - x₀² - 1

y₁кас = (2*(-2) - 2)x - (-2)² - 1

y₁кас = (2*(-2) - 2)x - (-2)² - 1

y₁кас = -6x - 5

y₂кас = (2*2 - 2)x - 2² - 1

y₂кас = 2x - 5


А) 6*6 = 6²   основание 6 и показатель 2 б) (-7)*(-7) = (-7) ² основание -7 и показатель 2в) a*a = a ² основание а и показатель 2 г) b*b= b ² основание b и показатель 2

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS