Есть ответ 👍

11класс. в правильной четырехугольной пирамиде боковое ребро наклонено к плоскости основания под углом 60°. найдите угол наклона боковой грани пирамиды к основанию пирамиды

157
269
Посмотреть ответы 2

Ответы на вопрос:

Exem76
4,5(79 оценок)

вообще-то есть формулы перехода углов прав. пирамид, от угла наклона α бокого ребра к плоскости основания к углу β наклона боковой грани к плоскости основания,   они связаны таким соотношением tgβ=√2*tgα, я эти формулы выводил еще в школе, а сейчас, когда у меня не крепятся файлы, конечно, будет сложно, объяснить, но я попробую.

в основании лежит квадрат. проекцией бокового ребра к плоскости основания будет половина   диагонали квадрата, если сторону обозначить а, то диагональ квадрата равна а√2, а ее половина а√2/2=а/√2, высота пирамиды пусть будет н, тогда тангенс угла наклона бок. ребра   к плоскости основания равен 2н/а√2=√2*н/а, теперь разберемся с углом наклона боковой грани к плоскости основания, проведем из основания высоты пирамиды, т.е. из точки пересечения диагоналей квадрата к стороне квадрата перпендикуляр, равный а/2, это проекция апофемы на плоскость основания, которая тоже будет перпендикулярна стороне квадрата по теореме о трех перпендикулярах. тангенс угла наклона бок. грани к плоскости основания равен 2н/а,

tgα=tg60°=√3,       tgβ =√2tg60°=√2*√3=√6, и тогда угол наклона, который мы ищем, равен arctg(√6)

MaLiKaKhOn
4,4(95 оценок)

5.2.   если прямая   l   перпендикулярна двум пересекающимся прямым (ав и ас) , лежащим в одной плоскости ( пл. треугольника авс) , то эта прямая   l   перпендикулярна самой плоскости ( пл. δавс).

в) прямая   l   перпендикулярна плоскости треугольника авс.

5.3.   так как ко⊥ авсд ( плоскости параллелограмма авсд) , то эта прямая перпендикулярна любой прямой, лежащей в плоскости авсд. значит, ко⊥ав , ко⊥вс , ко⊥ад , ко⊥сд , ко⊥ас , ко⊥вд

5.4.   мв⊥пл δавс   ⇒   мв перпендикулярна любой прямой, лежащей в этой плоскости авс, в том числе мв⊥вх ( х∈ас⊂δавс ) ⇒

∠мвх=90°   и   δмвх - прямоугольный .

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS