решить и объяснить решение подобных задач методом координат. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1, все ребра которой равны 1, найдите расстояние от точки A до прямой a) B1C1 б)CF1
Ответы на вопрос:
Решение задачи ДАНО: АВСDEFA1B1C1D1E1F1 - правильная шестиугольная призма ; АВ = АА1 = 1
НАЙТИ: p ( A ; CB1 )
1) точка А и отрезок СВ1 лежат в плоскости треугольника АВ1С.
Все боковые грани правильной шестиугольной призмы равны.
Значит, АВ1 = В1С => ∆ АВ1С - равнобедренный
Найдём все стороны ∆ АВ1С
2) Рассмотрим ∆ АВ1В ( угол АВВ = 90° ):
По теореме Пифагора:
АВ1² = АВ² + ВВ1²
АВ1² = 1² + 1² = 2
АВ1 = √2
АВ1 = В1С = √2
3) В основании правильной шестиугольной призмы лежит правильный шестиугольник. Все углы правильного шестиугольника равны 120°.
Рассмотрим ∆ АВС ( АВ = ВС ):
По теореме косинусов:
АС² = АВ² + ВС² - 2 × АВ × ВС × cos ABC
AC² = 1² + 1² - 2 × 1 × 1 × cos 120°
AC² = 2 - 2 × ( - 1/2 ) = 2 + 1 = 3
AC = √3
4) B1B перпендикулярен ВН
ВН перпендикулярен АС
Значит, по теореме о трёх перпендикулярах В1Н перпендикулярен АС
Высота в равнобедренном ∆ АВ1С является и медианой и биссектрисой =>
АН = НС = 1/2 × АС = 1/2 × √3 = √3/2
5) Рассмотрим ∆ В1СН ( угол В1НС = 90° ):
По теореме Пифагора:
В1С² = В1Н² + НС²
В1Н² = ( √2 )² - ( √3/2 )² = 2 - 3/4 = 5/4
В1Н = √5/2
Опустим из точки А перпендикуляр АМ на отрезок В1С. Соответственно, АМ = р ( А ; В1С )
6) Найдём площадь ∆ В1АС:
S b1ac = 1/2 × AC × B1H
С другой стороны, S b1ac = 1/2 × B1C × AM
Приравняем площади и получим:
1/2 × АС × В1Н = 1/2 × В1С × АМ
АС × В1Н = В1С × АМ
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
Gladiolus9431.10.2022 14:14
-
Dick66609.12.2022 12:31
-
kolesya220.04.2022 01:03
-
workout777411.01.2021 19:23
-
dItCh200125.06.2022 13:29
-
pavelmishulski12.01.2020 12:40
-
ulyana1454701.09.2022 07:43
-
Evas200710.03.2023 03:44
-
Aleijv02.12.2021 05:08
-
anyasaveleva220.04.2023 17:17
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.