Есть ответ 👍

Установить, как расположена точка А(1; -2) относительно окружности x^2+y^2 = 1 - внутри, вне или на контуре. Указание: для решения воспользоваться свойством расположения точки М1(х1; y1) и окружности (школьный курс геометрии 8-9 класс).

142
304
Посмотреть ответы 2

Ответы на вопрос:

мама1035
4,5(13 оценок)

точка A(1;-2) расположена вне окружности

Пошаговое объяснение:

Решим задание через определение степени точки относительно окружности

Степенью точки относительно данной окружности называется разность

{ d^{2}-R^{2}} ,

d — расстояние от точки до центра окружности,

R — радиус окружности.

Точки имеют следуюющие степени в зависимости от расположения:

- вне окружности - положительную,

- внутри окружности - отрицательную,

- на окружности - нулевую.

Общее уравнение окружности задается уравнением

\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=R^{2},

где (х0, у0) - координаты центра окружности

R - ее радиус.

В нашем случае:

x^2+y^2 = 1 < = (x{ - }0) {}^{2}{ +} (y{ -} 0) {}^{2}{ = } {1}^{2}

Следовательно,

радиус окружности R = 1;

центр окружности O = О(0; 0)

Теперь вычислим степень точки A(1;-2) относительно этой окружности:

A = A(1;-2); \: \: \: O =O(0;0); \: \: { R = 1} , \\ d=|AO|=\sqrt{(A_x-O_x)^2+(A_y-O_y)^2} \\ d = \sqrt{(1 - 0) {}^{2} + ( - 2 - 0) {}^{2} } = \\ = \sqrt{ {1}^{2} + ( - 2) {}^{2} \: } = \sqrt{1 + 4} = \sqrt{5} \\ {d}^{2} - {R}^{2} = ( \sqrt{5} )^{2} - {1}^{2} = 5 - 1 = 4 0

Итак мы выяснили, что d² - R² > 0 =>

=> точка A(1;-2) расположена вне окружности.

saidrasulov15
4,6(78 оценок)

6+8=14 280: 14=20 ответ: 20

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS