Есть ответ 👍

. Найти площадь функций у=е^х и у=е^-х х=1

103
264
Посмотреть ответы 3

Ответы на вопрос:

bossmakswell
4,8(9 оценок)

ответ: 2·(e-1);

Объяснение:


. Найти площадь функций у=е^х и у=е^-х х=1
Фуфик0372
4,8(87 оценок)

Найдем ограниченные линии

Найдем ограниченные линии1=e^x1=e

Найдем ограниченные линии1=e^x1=e x

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линии

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x −x)

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x −x) ∣

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x −x) ∣∣

/

0

02

02

02 =e

02 =e 2

02 =e 2 −2−e

02 =e 2 −2−e 0

02 =e 2 −2−e 0 +0=e

02 =e 2 −2−e 0 +0=e 2

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e 2

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e 2 −3) кв. ед.

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e 2 −3) кв. ед.

Ppapit
4,5(26 оценок)

85%-238  100%-х  х=238*100/85=280 это 80%  у-это 100%  у=280*(100/80)=350 рублей

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS