Ответы на вопрос:
1 a) (MD) и (BC) скрещивающиеся прямые
по теореме: Если одна из двух прямых (это ВС) лежит в некоторой плоскости, а другая прямая (это MD) пересекает эту плоскость в точке (это D) , НЕ лежащей на первой прямой (на ВС), то эти прямые скрещивающиеся.
(ВС) принадлежит плоскости по условию,
(MD) НЕ принадлежит плоскости (т.к. М НЕ принадлежит по условию) --->
(MD) ПЕРЕСЕКАЕТ плоскость в точке D ( D ведь принадлежит плоскости))
и эта точка D не лежит на прямой (ВС).
1 б) (MB) и (DK) скрещивающиеся прямые
и (MB) и (DK) пересекают данную плоскость --- здесь теорему не применить)))
нужно рассмотреть другую плоскость... например (MBD) -- три точки однозначно определяют плоскость))) ---аналогично можно рассмотреть, например, плоскость (KBD)
(MВ) принадлежит плоскости (MBD) по построению,
(КD) НЕ принадлежит плоскости (т.к. К является серединой (МА),
А НЕ принадлежит (MBD) по построению,
следовательно и К НЕ принадлежит (MBD)) --->
(KD) ПЕРЕСЕКАЕТ плоскость (MBD) в точке D
и эта точка D не лежит на прямой (МВ).
2) точки М и К принадлежат плоскости (АВС), следовательно и вся прямая (МК) принадлежит (АВС),
для треугольника АВС отрезок МК -- средняя линия по условию)))
про среднюю линию треугольника известно, что она || третьей стороне треугольника (в нашем случае || АС
(МК) ∈ (АВС), (МК) ∈ (а), (МК) || (AC) ---> (AC) || (a) по теореме:
Если прямая, не лежащая в данной плоскости, || КАКОЙ-НИБУДЬ прямой, лежащей в плоскости, то она || и ВСЕЙ данной ПЛОСКОСТИ.
(АС) НЕ ЛЕЖИТ в плоскости (а)...
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
anton1253526.05.2020 15:06
-
2002КетринПирс200221.11.2021 12:22
-
Ruiche11.02.2022 13:19
-
арбуз3011.04.2020 14:39
-
jdjenud05.09.2020 10:26
-
zhan0504197605.10.2021 04:36
-
hshdk20.12.2022 12:49
-
16вопрос03.09.2021 07:01
-
Doctor21617.08.2022 12:10
-
Sve123TA108.04.2022 00:31
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.