Ответы на вопрос:
1) y = 4cos^2 x + sin^2 x = 3cos^2 x + 1 так как cos x принимает значения [-1; 1], то cos^2 x принимает [0; 1]. значит, y = 3cos^2 x + 1 принимает [3*0+1; 3*1+1] = [1; 4] сумма целочисленных значений s = 1 + 2 + 3 + 4 = 10 2) есть формула произведения функций: sin a*cos b = 1/2*[sin(a+b) + sin(a-b)] sin 6x*cos 2x = sin 5x*cos 3x 1/2*[sin(6x+2x) + sin(6x-2x)] = 1/2*[sin(5x+3x) + sin(5x-3x)] 1/2*(sin 8x + sin 4x) = 1/2*(sin 8x + sin 2x) умножаем на 2 sin 8x + sin 4x = sin 8x + sin 2x sin 4x = sin 2x 2sin 2x*cos 2x = sin 2x sin 2x*(2cos 2x - 1) = 0 sin 2x = 0; 2x = pi*k; x1 = pi/2*k cos 2x = 1/2; 2x = +-pi/3 + 2pi*n; x2 = +-pi/6 + pi*n 3. sin x*sin 2x*sin 3x = 1/4*sin 4x sin x*sin 2x*sin 3x = 1/4*2sin 2x*cos 2x = 1/2sin 2x*cos 2x sin 2x*(sin x*sin 3x - 1/2cos 2x) = 0 sin 2x = 0; x1 = pi/2*k (это уже решено в 2) еще одна формула произведения функций: sin a*sin b = 1/2*[cos(a-b) - cos(a+b)] sin 3x*sin x = 1/2*[cos(3x-x) - cos(3x+x)] = 1/2*(cos 2x - cos 4x) 1/2*(cos 2x - cos 4x) - 1/2*cos 2x = 0 -1/2*cos 4x = 0; cos 4x = 0; 4x = pi/2 + pi*n; x2 = pi/8 + pi/4*n 4. если дробь равна 0, то числитель равен 0, а знаменатель нет. { 2 - 3sin x - cos 2x = 0 { 6x^2 - pi*x - pi^2 ≠ 0 в 1 уравнении выразим cos 2x = 1 - 2sin^2 x. во 2 уравнении разделим всё на pi^2 { 2 - 3sin x - 1 + 2sin^2 x = 2sin^2 x - 3sin x + 1 = (sin x - 1)(2sin x - 1) = 0 { 6(x/pi)^2 - (x/pi) - 1 = (3*x/pi + 1)(2*x/pi - 1) ≠ 0 получаем { sin x = 1; x1 = pi/2 + 2pi*k; sin x = 1/2; x2 = pi/6 + 2pi*n; x3 = 5pi/6 + 2pi*n { x/pi ≠ -1/3; x ≠ -pi/3; x/pi ≠ 1/2; x ≠ pi/2 решение: x1 = pi/2 + 2pi*k; k ∈ z; k ≠ 0 x2 = pi/6 + 2pi*n; x3 = 5pi/6 + 2pi*n; n ∈ z
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
ivanzalivnoi23.07.2022 03:55
-
agnesa989009.10.2020 12:29
-
Evgenia60107.06.2022 20:26
-
15081976101.05.2023 10:49
-
manzharenko1311.04.2020 16:07
-
aykmuradyan2007.04.2022 07:37
-
demirooova14.02.2020 04:11
-
halimattek09.05.2020 01:38
-
влада40121.12.2022 07:14
-
nikolayAK01.10.2020 11:05
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.