Есть ответ 👍

Oбчисліть висоту трикутника проведену до вершини кута b якщо кут abc = 120 градусів ab= 6 см площа трикутника =6√3

115
272
Посмотреть ответы 1

Ответы на вопрос:


Площадь сечения равна   \displaystyle \frac{7a^2}{8\;cos\alpha } .

Объяснение:

В правильной четырехугольной призме через середины двух смежных сторон основания проходит плоскость, которая образует с основанием призмы угол α и пересекает три боковых ребра. Найти площадь сечения, если сторона основания призмы А.

Построим сечение.

В основании правильной призмы лежит квадрат.

Отметим середины сторон АВ и AD и поставим точки К и Е соответственно. Соединим их.

Проведем диагонали АС и BD.

КЕ ∩ АС = Н.

Построим угол с вершиной в точке Н, равный α.

НР ∩ СС₁ = М.

Строим сечение, проходящее через три точки.

Продлим КЕ до пересечения  с СВ и CD  и поставим точки S и N  соответственно.

S ∈ BB₁C₁C;  M ∈ BB₁C₁C ⇒ S и M соединяем;

SM ∩ BB₁ = X;

N ∈ DD₁C₁C;  M ∈ DD₁C₁C ⇒ N и M соединяем;

NM ∩ DD₁ = T;

X ∈ AA₁B₁B;  K ∈ AA₁B₁B ⇒ X и K соединяем;

T ∈ AA₁D₁D;   E ∈ AA₁D₁D ⇒ T и E соединяем;    

EKXMT - искомое сечение.

Сечение представляет пятиугольник, состоящий из трапеции ЕКХТ и треугольника ХМТ.

⇒ S( EKXMT) = S(ЕКХТ) + S(ХМТ)      

1. Рассмотрим ΔABD - прямоугольный.

AD = AB = a (условие)

По теореме Пифагора найдем BD:

BD² = AD² + AB² = 2a²

BD = a√2

ЕК - средняя линия ΔАВD.

Средняя линия равна половине длины стороны, которую она не пересекает.

\displaystyle EK = \frac{a\sqrt{2} }{2} - меньшее основание ЕКХТ.

2. Рассмотрим ΔНРО - прямоугольный.

∠РНО = α (условие).

Диагонали квадрата равны и точкой пересечения делятся пополам.

\displaystyle AO = OC = \frac{a\sqrt{2} }{2}

Средняя линия треугольника делит пополам любой отрезок, соединяющий вершину треугольника с какой-либо точкой основания.

\displaystyle AH=HO=\frac{a\sqrt{2} }{4}

Косинус угла - отношение прилежащего катета к гипотенузе.

\displaystyle cos\;\alpha =\frac{HO}{HP} HP = \frac{HO}{cos\;\alpha }=\frac{a\sqrt{2} }{4\;cos\;\alpha }  - высота ЕКХТ.

ХТ = BD = a√2 - большее основание ЕКХТ.             

3. Найдем площадь трапеции.

Площадь трапеции равна произведению полусуммы оснований на высоту.

  \displaystyle S(EKXT)=\frac{EK+XT}{2}\cdot{HP}\\=\\\left(\frac{a\sqrt{2} }{2} +a\sqrt{2}\right):2\cdot{\frac{a\sqrt{2} }{4\;cos\;\alpha } } ==\frac{3a\sqrt{2} }{4}\cdot{\frac{a\sqrt{2} }{4\;cos\;\alpha } } =\frac{3a^2}{8\;cos\;\alpha }

4. Рассмотрим ΔНМС - прямоугольный.

НС = НО + ОС

\displaystyle HC= \frac{a\sqrt{2} }{4}+\frac{a\sqrt{2} }{2}=\frac{3a\sqrt{2} }{4}

\displaystyle cos\;\alpha =\frac{HC}{HM} HM=\frac{HC}{cos\;\alpha } =\frac{3a\sqrt{2} }{4\;cos\;\alpha }

Тогда РМ = НМ - НР

\displaystyle PM =\frac{3a\sqrt{2} }{4\;cos\alpha } -\frac{a\sqrt{2} }{4\;cos\alpha } =\frac{a\sqrt{2} }{2\;cos\alpha }

5. Найдем площадь ΔХМТ.

Площадь треугольника равна половине произведения стороны на высоту, проведенную к этой стороне.

\displaystyle S(XMT)=\frac{1}{2}XT\cdot{PM} ==\frac{1}{2}\cdot{a} \sqrt{2} \cdot{\frac{a\sqrt{2} }{2\;cos\alpha } }=\frac{a^2}{2\;cos\alpha }

6. Теперь можем найти площадь сечения:

\displaystyle S(EKXMT) = \frac{3a^2}{8\;cos\alpha }+\frac{a^2}{2\; cos\alpha }=\\ \\ =\frac{7a^2}{8\;cos\alpha }

Площадь сечения равна   \displaystyle \frac{7a^2}{8\;cos\alpha } .

#SPJ1


У правильній чотирикутній призмі через середини двох суміжних сторін основи проходить площина, яка у

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS