darinaavans
19.04.2021 09:40
Алгебра
Есть ответ 👍

Можно ли как-то проверить правильно ли найден предел?​

150
461
Посмотреть ответы 2

Ответы на вопрос:

aushatsy
4,5(19 оценок)

да можно

Объяснение:

напиши в поисковике "matematikam.ru." и напиши свой предел

Фаай
4,7(17 оценок)

не-не, тут не как сложную ф-цию,а как произведение нужно дифференциировать:

если так -  y=((5x^4)/5+2/x)(2x^4-x), то:

y'=((5x^4)/5+2/x)'(2x^4-x)+(5x^4/5+2/x)(2x^4-x)'= (производная от первой помноженная на вторую + первая на производную второй)

=((20x^3)/5-2/x^2)(2x^4-x)+(5x^4/5+2/x)(8x^3-1)=(4x^3-2/x^2)(2x^4-x)+(8x^3-1)(x^4+2/x)==

=x^2(16x^5-5x^2+12)

 

можно проще - раскрыть скобки и продифференциировать как многочлен:

y=((5x^4)/5+2/x)(2x^4-x)=(2x^3-1)(x^5+2)=2x^8-x^5+4x^3-2

y'=(2x^8-x^5+4x^3-2)'=2*8x^7-5x^4+4*3x^2=16x^7-5x^4+12x^2=x^2(16x^5-5x^2+12)

 

если же вот так -  y=(5x^(4/5)+2/x)(2x^4-x), то:

y'=(5x^(4/5)+2/x)'(2x^4-x)+(5x^(4/5)+2/x)(2x^4-x)'=

=(5*(4/5)x^(1/5)-2/x^2)(2x^4-x)+(5x^(4/5)+2/x)(8x^3-1)=

=(4/x^(1/5)-2/x^2)(2x^4-x)+(5x^(4/5)+2/x)(8x^3-1)==3x^(4/5)(4x^(6/5)+16x^3-3)

или:

y=(5x^(4/5)+2/x)(2x^4-x)=10x^(24/5)-5x^(9/5)+4x^3-2

y'=(10x^(24/5)-5x^(9/5)+4x^3=+48x^(19/5)-9x^(4/5)+12x^2=3x^(4/5)(16x^3-3+4x^(6/5))

все.

и, если  5x^4/5 - это  5x^(4/5), что мне кажется более вероятным, то пиши внимательней.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS