Есть ответ 👍

Сечением прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью α, содержащей прямую BD1 и параллельной прямой AC,
является ромб.

а) Докажите, что грань ABCD — квадрат.

б) Найдите угол между плоскостями α и BCC1
, если AA1 =6, AB=4.

(108/145)​

294
458
Посмотреть ответы 2

Ответы на вопрос:

marches
4,6(87 оценок)

Сечением прямоугольного параллелепипеда ABCDA1B1C1D1

плоскостью α, содержащей прямую BD1 и параллельной прямой AC,

является ромб.  а) Докажите, что грань ABCD — квадрат.  б) Найдите угол между плоскостями α и BCC1  , если AA1 =6, AB=4.

Объяснение:

а) Проведем а||АС, значит а параллельна диагональному сечению АСС₁А₁⇒ МК||АС.

По условию BMD₁К-ромб, значит D₁В⊥МК по свойству диагоналей ромба и МК||АС. Тогда по т. о 3-х перпендикулярах : если наклонная D₁В перпендикулярна прямой лежащей в плоскости АС , то и проекция DВ⊥АС ( прямой , лежащей в плоскости ). Получили , что в прямоугольнике АВСD диагонали  АС⊥DВ ⇒ АВСD -квадрат.

б)Проведем через М и К ( середины ребер)  плоскость β║(АВС) , получим точку Н  на ребре ВВ₁ , ВН=НВ₁=3 .

Пусть  НР⊥ВК,  т.к. МН⊥ВВ₁  ⇒ МР⊥ВК по т. о трех перпендикулярах⇒∠МРН-линейный угол данного двугранного.

ΔВНК -прямоугольный, ВК=√(16+9)=5.

ΔВНР≈ΔВНК ( по 2 углам общему и прямому) , значит сходственные стороны пропорциональны :  

НР:НВ=НК:ВК  , НР:3=4:5   , НР=12/5.

ΔМНР -прямоугольный , tg∠МРН=МН:РН ,  tg∠МРН=20/12=5/3

∠МРН=аrctg(5/3).


Сечением прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью α, содержащей прямую BD1 и параллель
znanijacom77
4,8(28 оценок)

собственно ответ вот не благодарите дада


В равнобедренном треугольнике боковая сторона равна 6, а высота проведённая к основанию, равна 4. На

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS