inna0509781
09.06.2023 07:11
Алгебра
Есть ответ 👍

Найти площадь фигуры, ограниченной линиями: y=arcsin2x, x=0, y= -π/2

184
339
Посмотреть ответы 3

Ответы на вопрос:

timkalo
4,6(64 оценок)

y=arcsin2x\ \ ,\ \ x=0\ \ ,\ \ y=-\dfrac{\pi}{2}\\\\-1\leq 2x\leq 1\ \ \to \ \ -\dfrac{1}{2}\leq x\leq \dfrac{1}{2}\ \ ,\ \ \ -\dfrac{\pi}{2}\leq arcsin2x\leq \dfrac{\pi }{2}\\\\\\S=\int\limits_0^{1/2}\Big(\dfrac{\pi}{2}-arcsin2x\Big)\, dx=\int \limits _0^{1/2}\dfrac{\pi}{2}\, dx-\int\limits_0^{1/2}\, arcsin2x\, dx=\\\\\\=\Big[u=arcsin2x\ ,\ du=\dfrac{2\, dx}{\sqrt{1-4x^2}}\ ,\ dv=dx\ ,\ v=x\ \Big]=

=\dfrac{\pi}{2}\cdot x\Big|^{1/2}_0-x\cdot arcsin2x\Big|^{1/2}_0+\int\limits_0^{1/2}\, \dfrac{2x\, dx}{\sqrt{1-4x^2}}=\Big[\ d(1-4x^2)=-8x\, dx\ \Big]=\\\\\\=\dfrac{\pi}{2}(0+\dfrac{1}{2})-\dfrac{1}{2}\cdot arcsin1-\dfrac{1}{4}\int\limits_0^{1/2}\, \dfrac{d(1-4x^2)}{\sqrt{1-4x^2}}dx=\\\\\\=\dfrac{\pi}{4}-\dfrac{\pi}{4}-\dfrac{1}{4}\cdot 2\sqrt{1-4x^2}\Big|^{1/2}_0=-\dfrac{1}{2}\cdot (0-\sqrt1)=\dfrac{1}{2}


Найти площадь фигуры, ограниченной линиями: y=arcsin2x, x=0, y= -π/2
kotenok88
4,6(11 оценок)

Объяснение: см. во вложении


Найти площадь фигуры, ограниченной линиями: y=arcsin2x, x=0, y= -π/2
lozovskaya2004
4,8(17 оценок)

  я точно не уверен но  вроде как   7,8 

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS