Есть ответ 👍

Найти производные функции (1/x)^arctg3x

287
458
Посмотреть ответы 2

Ответы на вопрос:

TheFoxySmile
4,4(95 оценок)

((1/x)^arctg(3x) )' = ( (x)^(-arctg3x) )' = -arctg(3x)*x^(-arctg3x - 1) * 3/(1 + 9x^2) = -3*arctg(3x) / ((1+9x^2)*(x^arctg3x + 1))
clon4
4,6(100 оценок)

Запишем данное уравнение в виде p(x,y)*dx+q(x,y)*dy=0, где p(x,y)=ln(y)-5*y²*sin(5*x), q(x,y)=x/y+2*y*cos(5*x). для того, чтобы данное уравнение было уравнением в полных дифференциалах, необходимо и достаточно выполнения условия dp/dy=dq/dx. в нашем случае dp/dy=1/y-10*y*sin(5*x), dq/dx=1/y-10*y*sin(5*x), т.е. dp/dy=dq/dx, поэтому данное уравнения есть уравнение в полных дифференциалах. но тогда справедлива система уравнений: p(x,y)=ln(y)-5*y²*sin(5*x)=du/dx q(x,y)=x/y+2*y*cos(5*x)=du/dy, где du/dx и du/dy - частные производные от искомой функции u(x,y). интегрируя первое уравнение системы по x, находим u(x,y)=ln(y)*∫dx-5*y²*∫sin(5*x)*dx=x*ln(y)-y²*cos(5*x)+f(y), где f(y) - неизвестная пока функция от y. дифференцируя теперь это равенство по y, находим du/dy=x/y-2*y*cos(5*x)+f'(y). а так как du/dy=q(x,y)=x/y-2*y*cos(5*x), то отсюда f'(y)=0 и соответственно f(y)=c1, где с1 - произвольная постоянная. значит, u(x,y)=x*ln(y)-y²*cos(5*x)+c1. но так по условию du=0, то u=const=c2, где c2 - также произвольная постоянная. отсюда получаем равенство x*ln(y)-y²*cos(5*x)=c, где c=c2-c1. это и есть решение данного уравнения. ответ: x*ln(y)-y²*cos(5*x)=c.  

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS