Три угла четырехугольника,вписанного в окружность,взятых в порядке 2:6:7. Найдите все углы четырехугольника
Ответы на вопрос:
ответ: Пусть дан четырехугольник ABCD, вписанный в окружность. Если x — коэффициент пропорциональности, тогда ∠A = 2 * x, ∠B = 6 * x, ∠C = 7 * x.
1. В окружность можно вписать только такой четырехугольник, у которого суммы противолежащих сторон попарно равны, то есть в данном по условию четырехугольнике ABCD должно выполняться равенство:
∠A + ∠C = ∠B + ∠D.
Известно, что сумма всех углов четырехугольника равна 360°, тогда:
∠A + ∠B + ∠C + ∠D = 360°.
Подставим данные по условию значения в оба выражения:
2 * x + 7 * x = 6 * x + ∠D;
2 * x + 6 * x + 7 * x + ∠D = 360°.
Мы получили системы линейных уравнений с двумя переменными.
Приведем подобные слагаемые в первом уравнении и выразим ∠D:
2 * x + 7 * x - 6 * x = ∠D;
∠D = 3 * x.
Приведем подобные слагаемые во втором уравнении и выразим ∠D:
∠D = 360° - 2 * x - 6 * x - 7 * x;
∠D = 360° - 15 * x.
Приравняем оба выражения:
3 * x = 360° - 15 * x;
3 * x + 15 * x = 360°;
18 * x = 360°;
x = 360°/18;
x = 20°.
2. Найдем градусные меры углов:
∠A = 2 * x = 2 * 20° = 40°.
∠B = 6 * x = 6 * 20° = 120°.
∠C = 7 * x = 7 * 20° = 140°.
∠D = 3 * x = 3 * 20° = 60°.
тр. аов и cob равны, по признаку сус
1 ао=ос - по условию
2 во - общая сторона
3 угол воа = углу вос по условию.
в равных треугольниках соответствующие элементы равны
значит ав = вс следовательно тр. равнобедренный. у равнобедренного тр углы при основании равны, что и требовалось доказать
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
умник161430.05.2022 04:32
-
ПАПА111111111118.09.2021 21:55
-
olgakankova8619.09.2020 01:52
-
Позитив4ик12311.05.2021 18:16
-
AvgustinaQueen01.10.2020 11:30
-
Elli3417.03.2022 02:38
-
tatianalednewa06.01.2021 09:58
-
1234567800643207.11.2022 09:54
-
Ксения20061226.03.2020 03:22
-
Aknur22102.08.2020 07:01
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.