Дан параллелограмм с длинами сторон 12 и 8. Биссектрисы его углов при пересечении образуют четырёхугольник. Чему равны длины диагоналей этого четырёхугольника?
Ответы на вопрос:
Дан параллелограмм ABCD с длинами сторон 12 и 8. Биссектрисы его углов при пересечении образуют четырехугольник. Чему равна длина диагоналей этого четырехугольника?
-----------------
По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник. Обозначим его вершины К, L, M и N.
Биссектрисы параллелограмма, являясь секущими, отсекают от него равнобедренные треугольники ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>
АВ=BQ=AT=CD=CR=DS=8 Тогда ВR=12-CR=4. Аналогично длина отрезков QC,, DT,, AS равна 4.
Отрезки QR и TS равны 12-2•4=4.
По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.
В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND
Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD, а BR║TD как лежащие на параллельных сторонах ABCD.
Из доказанного выше BL=RN. ⇒ BL=RN. ⇒
Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4
LN - диагональ прямоугольника KLMN. Диагонали прямоугольника равны.
КМ=LN=4 (ед. длины)
Подробнее - на -
Объяснение:
aa1 высота к bc
bb1 высота к ac
т.о точка пресечения высот
1). угол aob = углу a1ob1 = 100 вертикальные
2) рассм. 4 угольник a1ob1c - угол с = 360-90-90-100 = 80
3) по условию abc равнобед. ⇒ угол с=углу a = 80
4) угол b= 180-80-80 = 20
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
hjdbr16.07.2022 15:54
-
sdfsdfsddf21.12.2021 21:24
-
Ника700213.12.2020 04:50
-
gazizullinnafi07.01.2021 21:19
-
damirnikiforov18.03.2020 16:26
-
AREN1208200316.06.2021 23:37
-
Mahaeva3318.05.2020 22:22
-
dariavasilevskayaa17.01.2021 09:32
-
Nezlo815.12.2020 03:50
-
Оля090119.02.2023 05:10
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.