Есть ответ 👍

Большее основание трапециив 3 раза больше меньшего.найдите основания трапеции,если средняя линия равна 20​

147
296
Посмотреть ответы 3

Ответы на вопрос:


меньшее основание х

большее основание 3х

(х+3х): 2=20

4х/2=20

2х=20

х=10 - меньшее основание;

3*10=30 - большее основание

ответ: меньшее основание 10; большее-30.


ответ:

10 и 30.

объяснение:

сумма оснований равна 40.

пусть меньшее основание равна х,большее равно 3х

уравнение   х+3х=40; 4х=40; х=10  

3х=30


\boldsymbol{V=\dfrac{4l^3\sin^2\beta\cdot \cos\beta (1-\cos\alpha)}{3\sin\alpha}}

Объяснение:

Центр окружности, вписанной в равнобедренную трапецию, лежит на середине отрезка КЕ (точки К и Е - середины оснований).

Так как точка пересечения диагоналей лежит на том же отрезке, но ближе к меньшему основанию, высота пирамиды лежит на образующей конуса, проходящей через точку К.

Высота трапеции равна диаметру вписанной окружности, а суммы противолежащих сторон равны.

Итак, ВР = КЕ = 2R,

AB + CD = AD + BC

AD = b,  BC = a.

Чтобы найти высоту пирамиды, надо знать длину КН, а для этого найти расстояние между центром окружности и основанием высоты пирамиды ОН = х.

ΔАВР:  ∠АРВ = 90°,

AB=\dfrac{BP}{\sin\alpha}=\dfrac{2R}{\sin\alpha }

AP = BP · ctg α = 2R · ctg α

Тогда

\boldsymbol{b+a}=AB+CD=2AB\boldsymbol{=\dfrac{4R}{\sin\alpha}}

Так как по свойству равнобедренной трапеции

АР = (AD - BC) / 2, то

b - a = 2AP = 4R · ctg α

ΔAHD ~ ΔCHB по  двум углам, тогда их высоты относятся как сходственные стороны:

\dfrac{HE}{HK}=\dfrac{b}{a}

\dfrac{R+x}{R-x}=\dfrac{b}{a}

a(R + x) = b(R - x)

aR + ax = bR - bx

x(a + b) = R(b - a)

x=\dfrac{R(b-a)}{b+a}=\dfrac{R\cdot 4R\cdot ctg\alpha}{\dfrac{4R}{\sin\alpha}}=R\cdot \cos\alpha

KH = R - x = R(1 - cos α)

Справа на рисунке осевое сечение конуса, проходящее через хорду КЕ.

∠KSH = ∠KMO = β как соответственные при SH║MO и секущей КМ.

SH = KH · ctg β = R(1 - cos α) · ctgβ

Итак, объем пирамиды:

V=\dfrac{1}{3}S_{ABCD}\cdot SH

S_{ABCD}=\dfrac{b+a}{2}\cdot 2R=\dfrac{2R}{\sin\alpha }\cdot 2R=\dfrac{4R^2}{\sin\alpha}

V=\dfrac{1}{3}\cdot \dfrac{4R^2}{\sin\alpha }\cdot R(1-\cos\alpha )\cdot ctg\beta=\dfrac{4R^3ctg\beta (1-\cos\alpha)}{3\sin\alpha}

Осталось из прямоугольного треугольника МОЕ выразить R:

R=l\cdot \sin\beta

V=\dfrac{4l^3\sin^3\beta\cdot ctg\beta (1-\cos\alpha)}{3\sin\alpha}

\boldsymbol{V=\dfrac{4l^3\sin^2\beta\cdot \cos\beta (1-\cos\alpha)}{3\sin\alpha}}


Основанием пирамиды служит равнобедренная трапеция с острым углом Эта трапеция описана около окружн

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS