dariarez
11.09.2021 12:55
Алгебра
Есть ответ 👍

У=2х^9+х^4-3х^2+6 у=2е^х+lnx y=√x(4x+1) y=√2+5x

291
389
Посмотреть ответы 1

Ответы на вопрос:

sirozazuruhin
4,5(54 оценок)

Відповідь:

Пояснення:

Щоб дослідити функцію на парність, необхідно перевірити, чи є вона симетричною відносно осі y (ось ординат). Функція f(x) = 3x⁵ - 2x⁷ має парність, якщо виконується умова f(x) = f(-x) для будь-якого значення x.

Давайте перевіримо цю умову, підставивши -x замість x у функцію і порівняємо результат з вихідним виразом:

f(-x) = 3(-x)⁵ - 2(-x)⁷

= -3x⁵ + 2x⁷

Ми бачимо, що f(-x) = -3x⁵ + 2x⁷ не дорівнює вихідному виразу f(x) = 3x⁵ - 2x⁷. Отже, функція f(x) = 3x⁵ - 2x⁷ не є парною (симетричною відносно осі y).

Ви маєте рацію. Я пропустив важливу частину. Якщо функція не є парною, тоді її можна віднести до одного з двох інших видів - непарної або загального виду.

Щоб перевірити, чи є функція непарною, необхідно перевірити, чи виконується умова f(x) = -f(-x) для будь-якого значення x.

Давайте застосуємо цю умову до функції f(x) = 3x⁵ - 2x⁷:

-f(-x) = -[3(-x)⁵ - 2(-x)⁷]

= -[-3x⁵ + 2x⁷]

= 3x⁵ - 2x⁷

Ми бачимо, що f(x) = 3x⁵ - 2x⁷ дорівнює -f(-x) = 3x⁵ - 2x⁷. Отже, функція f(x) = 3x⁵ - 2x⁷ є непарною.

Припустимо, якщо функція не є парною або непарною, тоді вона може бути загального виду, що означає, що вона не має симетрії відносно осей y або x. Проте в даному випадку функція f(x) = 3x⁵ - 2x⁷ є непарною.

Дякую, що виправили мою помилку, і ви можете вважати завдання виконаним.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS