Есть ответ 👍

Окружность, вписанная в равнобокую трапецию, делит точкой касания боковую сторону на отрезки длиной 8 см и 18 см. найдите площадь трапеции.

279
446
Посмотреть ответы 3

Ответы на вопрос:

ahmed0051
4,8(71 оценок)

боковая сторона — а, отрезки, на которые её делит окружность — а1 и а2., радиус вписанной окружности — р, основания — в1 и в2. достраиваем треугольники, образованные центром окружности, углами трапеции и точками касания, получаем 8 прямоугольных треугольников, из которых два — с катетами р и а1, два — с катетами р и а2, два — с катетами р и в1/2, и два — с катетами ри в2/2. из теоремы пифагора для треугольников с общими гипотенузами (отрезки от центра окружности к вершинам) имеем р^2 + а1^2 = р^2 + в1^2/4 р^2 + а2^2 = р^2 + в2^2/4, отсюда в1 = 2*а1 в2 = 2*а2 ищем высоту, для этого строим высоту из верхней вершины. эта высота отсекает на нижнем основании отрезок х. поскольку трапеция равнобочная, х = (в2-в1)/2 = а2-а1. из теоремы пифагора имеем н^2 = (а1 + а2)^2 - (а2 -а1)^2 = 4а1*а2 с = (в1 + в2)*н/2 = 2*(а1 + а2)*квкор (а1*а2) (квкор — квадратный корень) . с = 2 * 26 * квкор (8*18) = 2*26*12 = 624.

Tus1
4,7(80 оценок)

боковые стороны равны 8+18=26/см/, а т.к. окружность вписана в равнобокую трапецию, то сумма ее боковых сторон равна сумме оснований, т.е. 2*26см, тогда средняя линия- полусумма оснований равна 26 см.

(36-16)/2=10-отрезок большего основания, отсекаемый высотой трапеции. найдем высоту по теореме пифагора   из треугольника с высотой трапеции отрезком большего основания, отсекаемого высотой, и бок. стороны трапеции√(26²-10²)=24/см/

площадь трапеции равна 24*26=624/см²/

kekys326
4,8(48 оценок)

не понимаю в украинском не чем не могу

Объяснение:

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS