Втреугольнике kme угол k=30°, угол м=40°, сторона km=10см. найдите высоту, проведённую из вершины мумоляю, максимально , , ! (
233
299
Ответы на вопрос:
Пусть m - середина ас. тогда вm - медиана и высота правильного треугольника авс. sm - медиана и высота равнобедренного треугольника sac. вm⊥ас, sm⊥ac, ⇒ ∠smb = 60° - линейный угол двугранного угла наклона боковой грани к основанию. центр шара, вписанного в правильную пирамиду, лежит в точке пересечения высоты пирамиды и биссектрисы угла, образованного апофемой и ее проекцией на основание (в нашем случае - ∠smh) sh - высота пирамиды, мо - биссектриса ∠smh. о - центр вписанного в пирамиду шара. он = r - расстояние от центра шара до плоскости основания. проведем ок⊥sm. ас⊥smb (вm⊥ас, sm⊥ac), значит ок⊥ас, ⇒ ок⊥sac, т.е. ок = r - расстояние от центра шара до грани sac. к - точка касания. δомн: нм = оh / tg∠omh = r / tg30° = r√3 нм - радиус окружности, вписанной в правильный треугольник: нм = а√3/6 а√3/6 = r√3 a = 6r δshm: hm / sm = cos 60° sm = hm / cos60° = r√3 / (1/2) = 2r√3 sбок = 1/2 pabc · sm = 1/2 · 3(6r) · 2r√3 = 18r²√3 проведем кр⊥sh, р - центр окружности, по которой поверхность шара касается боковой поверхности пирамиды. рк - ее радиус. ∠skp = ∠smh = 60° (соответственные при пересечении кр║мн секущей sm), ∠рко = ∠sko - ∠skp = 90° - 60° = 30° δpko: cos ∠pko = pk / ko cos 30° = r / r r = r√3/2 длина окружности касания: c = 2πr = 2π · r√3/2 = πr√3
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
Olenizbugushego07.09.2020 01:14
-
1234567125128.09.2020 13:07
-
AnastasiaKT21.05.2022 22:43
-
artmani22801.02.2023 11:14
-
КундызДиас08.04.2023 16:22
-
айсу1705.02.2022 17:11
-
09Sodlatov09.08.2021 17:41
-
deniza090630.07.2020 22:22
-
yul1975869402.05.2023 16:01
-
777555333131.10.2021 03:54
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.