Есть ответ 👍

Через конечную точку b диагонали bd=26,3 ед. изм. квадрата abcd проведена прямая перпендикулярно диагонали bd. проведённая прямая пересекает прямые da и dc в точках m и n соответственно. определи длину отрезка mn.

263
269
Посмотреть ответы 2

Ответы на вопрос:

m18303
4,5(62 оценок)

1. если через любую конечную точку любой из двух диагоналей квадрата проведём прямую mn перпендикулярно диагонали, то со сторонами квадрата и прямыми, на которых находятся стороны квадрата, проведённая прямая образует углы 45°. это легко доказать с данного чертежа.

 

2. таким образом в этой ситуации имеем 4 равных прямоугольных треугольника (признак по равным катетам и острым углам), у которых равны и их гипотенузы.

 

3. искомый отрезок mn состоит из гипотенуз двух треугольников, следовательно, длина mn=2⋅26,3=52,6 ед. изм.

dmitry113114
4,4(43 оценок)

23 из теста 2 для гиа по .

 

площадь треугольника abc равна 140. на стороне ac взята такая точка м, что am: cm=3: 2.биссектриса al пересекает прямую bm в точке k найдите площадь четырехугольника mclk, если известно, что mk: bk=1: 3

 

решение:

 

 

 

известно, что на стороне ac взята точка m так, что  am: cm=3: 2. таким образом, выв видите, что сторона ac содержит 3+2=5 частей. в соответствии с этим площадь треугольника  abc,   равная 140, делится прямой bm на два треугольника: abm с площадью 84 и mbc с площадью 56.

      здесь 140 квадратных единиц предварительно делим на 5 частей и получаем, что на одну часть приходится 28 квадратных единиц. тогда площадь треугольника abm составит 3 части, то есть 28*3=84 кв. единицы, и площадь треугольника mcb составит остальные 56 квадратных единиц (28*2=56).

    теперь вспомним, что бессектриса al угла a треугольника abm делит противоположную сторону bm в точке k и сам треугольник треугольник abm на 4 части в отношении  mk: bk=1: 3. в этом же отношении находятся и прилежащие стороны треугольника  abm, то есть am : ab как mk : bk. иначе говоря, am составляет 1 часть и bk составляет 3 части. 

      аналогично названная биссектрисса al делит сторону bc и сам треугольник abc на части, пропорциональные прилежащим сторонам. нам нужно вычислить отношение сторон последнего треугольника друг к другу. в силу того, что отрезок

 

известно, что на стороне ac взята точка m так, что  am: cm=3: 2. таким образом, выв видите, что сторона ac содержит 3+2=5 частей. в соответствии с этим площадь треугольника  abc,   равная 140, делится прямой bm на два треугольника: abm с площадью 84 и mbc с площадью 56.

      здесь 140 квадратных единиц предварительно делим на 5 частей и получаем, что на одну часть приходится 28 квадратных единиц. тогда площадь треугольника abm составит 3 части, то есть 28*3=84 кв. единицы, и площадь треугольника mcb составит остальные 56 квадратных единиц (28*2=56).

    теперь вспомним, что бессектриса al угла a треугольника abm делит противоположную сторону bm в точке k и сам треугольник треугольник abm на 4 части в отношении  mk: bk=1: 3. в этом же отношении находятся и прилежащие стороны треугольника  abm, то есть am : ab как mk : bk. иначе говоря, am составляет 1 часть и bk составляет 3 части. 

      аналогично названная биссектрисса al делит сторону bc и сам треугольник abc на части, пропорциональные прилежащим сторонам. нам нужно вычислить отношение сторон последнего треугольника друг к другу. в силу того, что отрезок am составлял по условию 3 части, а теперь составляет одну часть отрезок ab теперь составляет 9 частей, а отрезок mc содержит 2 части, как дано по условию . тогда сторона ac составляет 5 частей и всего ab+ac = 3 + 2 = 14 частей. легко подсчитать, что на 1 часть приходится 140 : 14 = 10 квадратных единиц площади. поэтому площадь треугольника alc будет равна 10*5=50 кв. единиц, и площадь треукгольника alb будет равна 90 кв. ед. площадь треугольника akm равна 84 : 4 = 21 (кв. ед.) тогда искомая площадь четырехугольника mclk равна 50 - 21 = 29 (кв. единиц). решена !

 

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS