Исследуйте функцию (как можно подробнее) и постройте её график: 1) y=x^4-2x^2+2; 2) y= x+2/x-3. заранее .
174
266
Ответы на вопрос:
Дана функция: y = -x^4 + 2x^2 + 3при построении графиков функций можно примерно придерживаться следующего плана: 1. найти область определения функции и область значений функции, выявить точки разрыва, если они есть. ограничений нет: функция определена и непрерывна на всей числовой прямой, отсутствуют вертикальные асимптоты и точки разрыва функции. область значений определится после нахождения экстремумов. 2. выяснить, является ли функция четной или нечетной. проверим функцию - четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(-x). так как переменная в чётных степенях, то функция чётная. 3. выяснить, является ли функция периодической - нет. 4. найти точки пересечения графика с осями координат (нули функции). точка пересечения графика функции с осью координат оу: график пересекает ось y, когда x равняется 0: подставляем x=0 в -x^4+2x^2+3. у =-0^4+2*0^2+3 = 3, результат: y=3. точка: (0; 3). точки пересечения графика функции с осью координат ох: график функции пересекает ось x при y=0, значит, нам надо решить уравнение: -x^4+2x^2+3 = 0. делаем замену х^2 = t и получаем квадратное уравнение: -t^2+2t+3 = 0. квадратное уравнение, решаем относительно t: ищем дискриминант: d=2^2-4*(-1)*3=4-4*(-1)*3=)*3=*3)=)=4+12=16; дискриминант больше 0, уравнение имеет 2 корня: t_1=(√16-2)/(2*(-1))=(4-2)/(2*(-1))=2/(2*(-1))=2/(-2)=-2/2=-1; t_2=(-√16-2)/(2*(-1))=(-4-2)/(2*(-1))=-6/(2*(-1))=-6/(-2)=/2)=)=3. первый корень отбрасываем, так как квадрат х не может быть отрицательным числом. находим 2 точки пересечения графика с осью ох: х = √3 и х = -√3. 5. найти асимптоты графика - их нет, так как все пределы при х⇒∞ равны ∞. 6. вычислить производную функции f'(x) и определить критические точки. y' = 4x³ + 4x = -4x(x² - 1). приравниваем нулю: -4x(x² - 1) = 0. получаем 3 критические точки: х = 0, х = 1 и х = -1. 7. найти промежутки монотонности функции. получили 4 промежутка: (-∞; -1), (-1; 0), (0; 1) и (1; +∞). 8. определить экстремумы функции f(x). где производная положительна - функция возрастает, где отрицательна - там убывает. точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума. x = -2 -1 -0,5 0 0,5 1 2 y' = 24 0 -1,5 0 1,5 0 -24.имеем: 2 максимума: (-1; 4) и (1; 4) и локальный минимум (0; 3). 4 промежутка монотонности: - возрастание (-∞; -1) и (0; 1), - убывание (-1; 0) и (1; +∞).теперь определилась область значений функции: (-∞; 3].9. вычислить вторую производную f''(x) = -12x^2+ 4. приравниваем нулю: -12x^2+ 4 = -12(x^2- (1/3)) = 0. имеем 2 точки перегиба: х = 1/√3 и -1/√3. 10. определить направление выпуклости графика и точки перегиба. где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый. x = -1 -0,57735 0 0,57735 1 y'' = -8 0 4 0 -8.график выпуклый на промежутках (-∞; (-1/√3)) и ((1/√3); +∞), вогнутый на промежутке (-1/√3) (1/√. построить график, используя полученные результаты исследования. дан в приложении.
(3x-2)² -(3x-1)(3x+1)= -2x 9x²-12x+4 - 9x²+1+2x=0 -10x+5=0 10x=5 x=5: 10 x=0.5 25a² -81=0 (5a+9)(5a-9)=0 5a+9=0 5a= -9 a1= - 1.8 5a-9=0 5a=9 a=9: 5 a2=1.8
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
tima201103.10.2021 13:35
-
LutsenkoRodion22.05.2020 06:15
-
aidochka8206.12.2022 22:54
-
PashaPlaytri03.08.2021 05:30
-
Anna336717108.03.2021 00:52
-
Svetlanalitv03.04.2020 07:46
-
Anastasia15Kovaleva05.03.2021 05:46
-
Liza689513.11.2022 15:10
-
HelpmeTT13.04.2022 23:15
-
AnnKJ13.05.2023 06:21
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.