Есть ответ 👍

Периметр правильного треугольника, вписанного в окружность,равен 45 см. найдите сторону квадрата,вписанного в ту же окружность.

108
140
Посмотреть ответы 2

Ответы на вопрос:


1.периметр правильного треугольника, вписанного в окружность равен

р=3r*sqrt(3)

откуда

r=p/3*sqrt(3)=45/3*sqrt(3)=15*sqrt(3)

радиус окружности описанной около восьмиугольника определяется по формуле

r=a/2sin(360/16)=a/2sin(22,5°)

откуда

a=r*2sin(22,5°)=2*15*sqrt(3)*sin(22,5°)=30*1,7*0,38=19,38

 

 

2. площадь квадрата равна

s=a^2

определим радиус окружности

r^2=a^2+a^2=2a^2

площадь круга равна

sк=pi*r^2=2*pi*a^2=144*pi

 

 

 

3. l=pi*r*a/180, где a – градусная мера дуги, r- радиус окружности

l=pi*3*150/180=2,5*pi

 

4. сторона квадрата равна p/4=48/4=12

диагональ квадрата равна

d^2=a^2+a^2=144+144=288

d=12*sqrt(2)

радиус квадрата вписанного в окружность равна

r=d/2=6*sqrt(2)

сторона правильного пятиугольника l, вписанная в эту окружность равна

l=2r*sin(36°)=12*sqrt(2)*sin(36°)=12*1,4*0,588=9,88

 

5. площадь кольца находим по формуле:

s=pi*  (r^2−r^)

s=pi*(7^2-3^2)=pi*(49-9)=40*pi

 

6. треугольник равносторонний, так как угол равен 60°, радиус окружности равен 4

найдем площадь треугольника по формуле

sт=r^2*sqrt(3)/4

sт=16*sqrt(3)/4=4*sqrt(3)

найдем площадь сектора по формуле

sc=pi*r^2*(60/360)=pi*16/6==8*pi/3

найдем площадь сегмента

sсм=sс-sт=8*pi/3-4*sqrt(3)=1,449вроде как то так 


По теореме синусов

BC/sinA=AB/SinC

4÷2/3=3корней из 3÷sin C

Получаем sinC=корень из 3 на 2,а это 60°

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS