Krank09
04.01.2023 18:53
Алгебра
Есть ответ 👍

.(5. решить уравнение x^2+xy+y^2-2x+2y+4=0 6. докажите, что если сумма (x^2+y^2)делитсяна3 и x, y- целые, то x и yделятся на 3.).

126
326
Посмотреть ответы 2

Ответы на вопрос:

anyyy001
4,8(23 оценок)

5. не могу строго доказать. получается из анализа коэффициентов - мнимый эллипс, хотя одно решение есть точно: х = -2, у = 2. видимо эллипс вырождается в точку.

6. итак x^2 + y^2 = 3n, где n - натуральный индекс.

докажем "от противного". пусть х и у - не делятся на 3.

значит они делятся на 3 с остатком либо 1, либо 2.

а) пусть х =3к+1, у = 3m+1  (оба делятся с остатком 1), k,m -натур. индекс.

тогда: (3k+1)^2 + (3m+1)^2 = 9k^2+6k+1 +9m^2+6m+1 =

= 3(3k^2+2k+3m^2+2m)  + 2  - видим, что не равно 3n (есть остаток 2) - противоречит условию.

б) пусть х=3k+2, y=3m+2 (оба делятся с остатком 2)

тогда: (3k+2)^2 + (3m+2)^2 = (9k^2+12k +4) + (9m^2+12m+4) =

3(3k^2+4k+3m^2+4m+2)  + 2 - также появился остаток 2 - не равно 3n- противоречит условию.

в) пусть х=3k+1, y = 3m+2 (одно делится с остатком 1, другое - с остатком 2 - причем не важно какое- абсолютно симметрична)

тогда: (3k+1)^2 + (3m+2)^2 = (9k^2+6k+1) + (9m^2 + 12m +4) =

= 3(3k^2+2k+3m^2+4m+1)  + 2  - опять не делится на 3 - противоречит условию.

мы разобрали все возможные случаи х и у, не делящихся на 3. ни один из них не отвечает условию!

значит от противного делаем вывод: х и у делятся на 3! что и требовалось доказать.

zagertdinovIlfat
4,8(60 оценок)

ответ:сам не знаю братан

Объяснение:

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS