Есть ответ 👍

Угол при вершине осевого сечения конуса равен 60°, сумма длин его радиуса и образующей равна 2 см. найдите площадь полной поверхности конуса.

101
196
Посмотреть ответы 2

Ответы на вопрос:

larkina2000
4,8(95 оценок)

осевое сечение конуса   - это равнобедренный треугольник. следовательно, угол при вершине делится высотой конуса пополам. тогда в прямоугольном треугольнике, образованном высотой конуса, его радиусом (катеты) и образующей (гипотенуза) образующая l=2r, так как радиус лежит против угла 30°. учитывая, что r = (2-l) см (дано), можем написать: l =2*(2-l) см.   => l=4-2l,   => l=4/3 см.  

тогда r=2/3 см.

площадь полной поверхности конуса равна сумме площадей основания и боковой поверхности, то есть s = so +sб, или s=π(r²+r*l). подставляя найденные значения, получим

s = π(4/9+2*4/(3*3)) = 12/9 = 4/3см² = 1и1/3 см².

ответ: s=1и1/3 см².

alina20067
4,6(62 оценок)

пусть первый рабочий делал в день - х деталей, тогда второй (х+50). когда производительность повысилась 1 стал делать 1,01х деталей, а второй 1,02(х+50)=1,02х+51. вместе стали делать 254 детали, т.е.

1,01х+1,02х+51=254

2,03х=203; х=100 деталей  - первый рабочий 100+50=150 деталей - второй рабочий

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS