Ответы на вопрос:
В физике рассматриваются векторные и скалярные величины. Скалярные величины имеют только количественную характеристику. Для векторных величин помимо числовых характеристик очень важна такая характеристика, как направление, от которой зависит результат действия данного параметра.
Рассматривая векторные величины, следует чётко различать, что:
вектор, характеризующий физическую величину – это геометрическая фигура, изображающая в выбранном масштабе эту величину в заданной системе координат, вектор не может быть равен числу;
числовыми характеристиками вектора являются его координаты или проекции на оси координат, которые могут быть положительными или отрицательными в зависимости от выбранных направлений осей координат и направления самого вектора;
числовой характеристикой вектора является длина вектора или его модуль, которая всегда только положительная.
Равные векторы
Равными являются векторы, которые могут быть совмещены с параллельного переноса. Это означает, что они коллинеарные в пространстве (то есть лежат на параллельных прямых), сонаправленные (имеют одинаковые углы наклона к осям координат) и имеют одинаковую длину.
Если заданы координаты вектора а (x; y; z), то модуль вектора определяется по формуле: |а| = √(x² + y² + z²), где x; y; z – координаты вектора, которые находятся как разность между соответствующими координатами конца вектора и его начала.
Проекции равных векторов
Из определения равных векторов следует, что они имеют одинаковые координаты или проекции, так как они имеют одинаковые длины и углы наклона к осям координат. Например, в двухмерном пространстве вектор скорости имеет проекции на ось абсцисс: vх = v ∙ cos α; на ось ординат vу = v ∙ sin α, где α – угол между осью абсцисс и вектором. В зависимости от угла α проекции могут быть положительными или отрицательными числами.
Рассматривая векторные величины, следует чётко различать, что:
вектор, характеризующий физическую величину – это геометрическая фигура, изображающая в выбранном масштабе эту величину в заданной системе координат, вектор не может быть равен числу;
числовыми характеристиками вектора являются его координаты или проекции на оси координат, которые могут быть положительными или отрицательными в зависимости от выбранных направлений осей координат и направления самого вектора;
числовой характеристикой вектора является длина вектора или его модуль, которая всегда только положительная.
Равные векторы
Равными являются векторы, которые могут быть совмещены с параллельного переноса. Это означает, что они коллинеарные в пространстве (то есть лежат на параллельных прямых), сонаправленные (имеют одинаковые углы наклона к осям координат) и имеют одинаковую длину.
Если заданы координаты вектора а (x; y; z), то модуль вектора определяется по формуле: |а| = √(x² + y² + z²), где x; y; z – координаты вектора, которые находятся как разность между соответствующими координатами конца вектора и его начала.
Проекции равных векторов
Из определения равных векторов следует, что они имеют одинаковые координаты или проекции, так как они имеют одинаковые длины и углы наклона к осям координат. Например, в двухмерном пространстве вектор скорости имеет проекции на ось абсцисс: vх = v ∙ cos α; на ось ординат vу = v ∙ sin α, где α – угол между осью абсцисс и вектором. В зависимости от угла α проекции могут быть положительными или отрицательными числами.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Физика
-
Nicalay29.12.2020 12:56
-
omar2807.07.2020 03:34
-
akimhikp01b5f02.12.2021 15:43
-
Рофлер04.02.2023 04:06
-
maksim345202.01.2023 06:45
-
Mymail1027.01.2023 11:18
-
батя16027.02.2023 23:26
-
acherevachanna20.01.2021 18:39
-
marrycat110.08.2021 18:29
-
Грамотейка104.11.2022 20:55
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.