Востроугольном треугольнике авс провели высоту вн из точки н на сторону ав и вс опустили перпендикулры нк и нм соответсвенно. докажите что треугольник мвк подобен треугольнику авс.
142
374
Ответы на вопрос:
Вот пришло в голову решение : ) так-то ерундовая : ) я продлеваю перпендикуляры hk и hm за точку h до пересечения с ba в точке a1 и bc в точке c1 (ну, точки лежат на из за того, что ∠abc острый, эти точки есть и лежат где положено : ) ) для треугольника a1bc1 h - точка пересечения высот (ну двух-то точно : ) - a1m и c1k), поэтому a1c1 перпендикулярно bh, и, следовательно, параллельно ac; то есть ∠bac = ∠ba1c; точки k и m лежат на окружности, построенной на a1c1, как на диаметре, поэтому ∠ba1c + ∠kmc = 180°; как противоположные углы вписанного четырехугольника. или, что же самое, ∠ba1c = ∠bmk; следовательно ∠bac = ∠bmk; и треугольники abc и bmk имеют равные углы. то есть, подобны. следствие, которое важнее : ) четырехугольник akmc - вписанный. то есть через эти 4 точки можно провести окружность. дополнение. тривиальный способ решения тут такой. ∠khb = ∠a; ∠mhb = ∠c; bk = bh*sin(a) = bc*sin(c)*sin(a); bm = bh*sin(c) = ba*sin(a)*sin(c); то есть у треугольников abc и mbk угол b общий, и стороны общего угла пропорциональны bm/ba = bk/bc = sin(a)*sin(b); значит треугольники подобны. коэффициент подобия sin(a)*sin(c), что тоже полезное следствие.
Первая сторона = 24 см вторая сторона = 24+18= 42 см третья сторона = 42: 2 =21 см ответ мне кажется сам напишешь)
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
ektgdb25.06.2023 03:13
-
MaksStilinski18.05.2020 05:37
-
matvienko1417.04.2022 12:15
-
Zinovevadara19107.11.2022 14:26
-
cherru127.04.2020 09:36
-
поганаямолодешь24.03.2020 20:27
-
Juliana241426.02.2020 19:08
-
VanekPhantom30.09.2020 04:54
-
MoLoDaYa66616.03.2020 11:02
-
Vikylilaha24.12.2021 17:25
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.