Gok3004
03.06.2021 15:40
Алгебра
Есть ответ 👍

Знайдіть чотири перших членів ї прогресії у якій перший член менший від третього на 18 а різниця між третім та п'ятим членами дорівнює 72 прошу

188
454
Посмотреть ответы 2

Ответы на вопрос:

софия725
4,8(47 оценок)

B3> b1 на 18 b3 - b5 = 72 составим систему: b1q² - b1 = 18                 b1( q² -1) = 18 b1q^4 - b1q² = 72           b1q²(q² - 1) = 72   разделим второе уравнение на первое( b1(q² - 1) сократятся) -q² = - 4 q² = 4 q = +-2 a)  q = 2                         б) q= -2 b1(q² -1) = 18                 b1(q² - 1 ) = 18 b1·3 = 18                         b1·3 = 18 b1 = 6                              b1 = 6 ответ: 6; 12; 24; 48
vasinmihailov
4,5(66 оценок)

Объяснение:

Во-первых, область определения

-x^2 - 8x - 7 >= 0

x^2 + 8x + 7 <= 0

(x + 1)(x + 7) <= 0

x = [-7; -1]

Во-вторых, выделяем корень

√(-x^2 - 8x - 7) = -ax + 2a + 3

Возводим в квадрат

-x^2-8x-7 = (-ax+2a+3)^2 = a^2*x^2-4a^2*x+4a^2-6ax+12a+9

x^2*(a^2 + 1) + x*(8 - 4a^2 - 6a) + (7 + 4a^2 + 12a + 9) = 0

x^2*(a^2 + 1) + 2x*(-2a^2 - 3a + 4) + (4a^2 + 12a + 16) = 0

Получили квадратное уравнение.

Если оно имеет только 1 корень, то D = 0

D/4 = (-2a^2 - 3a + 4)^2 - (a^2 + 1)(4a^2 + 12a + 16) =

= (4a^4 + 12a^3 + 9a^2 - 16a^2 - 24a + 16) -

- (4a^4 + 4a^2 + 12a^3 + 12a + 16a^2 + 16) =

= 9a^2 - 16a^2 - 24a - 4a^2 - 12a - 16a^2 = -27a^2 - 36a = -9a(3a + 4) = 0

a1 = 0; a2 = -4/3

Подставляем эти а и проверяем х.

1) a = 0

0 + √(-x^2 - 8x - 7) = 3

-x^2 - 8x - 7 = 9

-x^2 - 8x - 16 = -(x + 4)^2 = 0

x1 = x2 = -4

2) a = -4/3

-4x/3 + √(-x^2 - 8x - 7) = -8/3 + 3 = 1/3

√(-x^2 - 8x - 7) = 4x/3 + 1/3 = (4x + 1)/3

9(-x^2 - 8x - 7) = (4x + 1)^2

-9x^2 - 72x - 63 = 16x^2 + 8x + 1

25x^2 + 80x + 64 = (5x + 8)^2 = 0

x1 = x2 = -8/5

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS