Основания равнобедренной (равнобокой) трапеции равны 8 и 20 сантиметров. Боковая сторона равна 10 см. Найдите площадь
128
182
Ответы на вопрос:
Решение.
Из вершины B трапеции ABCD опустим высоту BM на основание AD. Из вершины C на основание AD опустим высоту CN. Поскольку MBCN является прямоугольником, то
AD = BC + AM + ND
Треугольники, получившиеся в результате того, что мы опустили из меньшего основания равнобокой трапеции на большее две высоты - равны. Таким образом,
AD = BC + AM * 2
AM = (AD - BC) / 2
AM = ( 20 - 8 ) / 2 = 6 см
Таким образом, в треугольнике ABM, образованном высотой, опущенной из меньшего основания трапеции на большее нам известны катет и гипотенуза. Оставшийся катет, который одновременно является высотой трапеции, найдем по теореме Пифагора:
BM2 = AB2 - AM2
BM2 = 102 - 62
BM = 8 см
Поскольку высота трапеции ABCD равна 8 см, а высота подобной трапеции - 12 см, то коэффициент подобия будет равен
k = 12 / 8 = 1,5
Поскольку в подобных фигурах все геометрические размеры пропорциональны друг другу с коэффициентом подобия, найдем площадь подобной трапеции. Произведение полусуммы оснований подобной трапеции на высоту выразим через известные геометрические размеры исходной трапеции и коэффициент подобия:
Sпод = (AD * k + BC * k ) / 2 * ( BM * k )
Sпод = ( 20 * 1,5 + 8 * 1,5 ) / 2 * (8 * 1,5) = ( 30 + 12 ) / 2 * 12 = 252 см2
Ответ: 252 см2
Из вершины B трапеции ABCD опустим высоту BM на основание AD. Из вершины C на основание AD опустим высоту CN. Поскольку MBCN является прямоугольником, то
AD = BC + AM + ND
Треугольники, получившиеся в результате того, что мы опустили из меньшего основания равнобокой трапеции на большее две высоты - равны. Таким образом,
AD = BC + AM * 2
AM = (AD - BC) / 2
AM = ( 20 - 8 ) / 2 = 6 см
Таким образом, в треугольнике ABM, образованном высотой, опущенной из меньшего основания трапеции на большее нам известны катет и гипотенуза. Оставшийся катет, который одновременно является высотой трапеции, найдем по теореме Пифагора:
BM2 = AB2 - AM2
BM2 = 102 - 62
BM = 8 см
Поскольку высота трапеции ABCD равна 8 см, а высота подобной трапеции - 12 см, то коэффициент подобия будет равен
k = 12 / 8 = 1,5
Поскольку в подобных фигурах все геометрические размеры пропорциональны друг другу с коэффициентом подобия, найдем площадь подобной трапеции. Произведение полусуммы оснований подобной трапеции на высоту выразим через известные геометрические размеры исходной трапеции и коэффициент подобия:
Sпод = (AD * k + BC * k ) / 2 * ( BM * k )
Sпод = ( 20 * 1,5 + 8 * 1,5 ) / 2 * (8 * 1,5) = ( 30 + 12 ) / 2 * 12 = 252 см2
Ответ: 252 см2
Я думаю 1. Это вода из подземелья, но они льются с большого склона например, из дыры.
Объяснение:
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Другие предметы
-
1MQL220.03.2020 15:29
-
medvedevastasy24.10.2020 06:49
-
tnepolu27.08.2022 04:55
-
seregasasaas21.02.2020 22:22
-
As33723.02.2021 06:26
-
Amaliya21101308.03.2020 14:50
-
stasvikulyа18.04.2023 06:06
-
девочкаксюша05.07.2022 16:33
-
Human33331.05.2022 01:25
-
адамчик223.10.2022 06:13
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.