Есть ответ 👍

M, n целые числа. докажите, что mn (m+n) всегда являются четными числами.

115
282
Посмотреть ответы 2

Ответы на вопрос:

Апслтел
4,8(12 оценок)

есть три варианта:

m=2a, n=2b

mn(m+n)=2a*2b*(2a+2b) - число делится на 2 (четное)

m=2a, n=2b+1

mn(m+n)=2a*(2b+1)*(2a+2b+1) - число делится на 2 (четное)

m=2a+1, n=2b+1

mn(m+n)=(2a+1)*(2b+1)*(2a+1+2b+1)= (2a+1)*(2b+1)*(2a+2b+2)=2(2a+1)*(2b+1)*(a+b+1) = число делится на 2 (четное)

Olesechka00818
4,8(76 оценок)

ответ:

вроде ответ 2_[1] ответ 77

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS