Средняя линия трапеции равна 11 см, меньшее основание 6 см. найдите большее основание трапеции.
226
355
Ответы на вопрос:
Известно, что формула средней линии трапеции вычисляется по формуле: ср.л=1/2*(ad+ bc) подставляем в формулу наши значения: 11=1/2(6+х), 22=6+х, х=22-6=16. ответ значит второе основание 16 см
А- сторона h - высота β - угол между сторонами высота h = a*sin(β) диагональ по теореме косинусов d₁² = 2*a²-2a²cos(β) решаем совместно 40² = 2*a²-2a²cos(β) 24 = a*sin(β) sin²(β) = (24/a)² cos²(β) = 1-(24/a)² cos²(β) = (a²-24²)/a² (2a²-1600)/(2a²) = cos(β) (a²-800)/a² = cos(β) (a²-800)²/a⁴ = cos²(β) (a²-800)²/a⁴ = (a²-24²)/a² (a²-800)² = (a²-24²)*a² a⁴ - 1600a² + 640000 = a⁴ - 576a² 640000 - 1024a² = 0 625 - a² = 0 a = √625 = 25 - сторону нашли, хорошо : ) и площадь s = a*h = 25*24 = 600 вторая диагональ по теореме косинусов, учитывая, что cos(π-β) = -cos(β) d₂² = 2*a²+2a²cos(β) 40² = 2*a²+2a²cos(β) 1600 - 2*a² = 2a²cos(β) 800 - a² = a²cos(β) (800 - a²)/a² = cos(β) (800 - a²)²/a⁴ = cos²(β) собственно, дальше можно не решать, т.к. вариант для первой диагонали и второй на этом этапе становится эквивалентным, т.к. (800 - a²)² = (a² - 800)² ответ - 600
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
kuki1008.12.2021 19:26
-
Cr4zyvlad30.11.2020 14:34
-
vladiktikhonov227.08.2020 10:47
-
olegtab3420.07.2020 10:59
-
bogdankavolev920.02.2020 22:25
-
Amigo22228822.11.2020 14:25
-
Анаша201827.06.2021 09:23
-
0372110.02.2022 20:30
-
mykmin00125.01.2020 03:56
-
новичок62430.12.2021 07:15
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.