1) корень из x+1=3 2) корень из 2x+3=x 3) корень из -4x во 2 степени -16=2 4) x+1=корень из 8-4x 5) корень из 2x+ корень из x-3=-1 6)корень из x+17- корень x+1=2 7)корень из 1-2x- корень из 13+x= корень из x+4 8)корень из 3-x*корень из x+4= корень из 6 9)корень из 5+ корень из x-1=3 10)корень из, корень из x+13= корень из 17-3корень из x.
276
302
Ответы на вопрос:
План решения такой: в каждом примере сначала проверяем, при каких условиях выражение под корнем не отрицательно, затем решаем уравнение избавляясь от корня путем возведения всего выражения в квадрат, затем проверяем, чтобы решение удовлетворяло условию неотрицательности выражения под корнем. итак 1) √(x+1)=3 x+1≥0 или x≥-1 возводим уравнение в квадрат: х+1=9 х=8 8≥-1 ответ: 8 2) √(2x+3)=x 2х+3≥0 , откуда х≥-1,5 кроме того, выражение √(2x+3) всегда ≥0 поэтому х≥0 возводим в квадрат 2х+3=х² x²-2x-3=0 d=2²+4*3=4+12=16 √d=4 x₁=(2-4)/2=-1< 0 - не удовлетворяет условию х≥0, отбрасываем х₂=(2+4)/2=3 ответ: 3 3) √(-4x²-16)=2 -4x²-16≥0 4х²≤-16 решения нет 4) x+1=√(8-4x) 8-4x≥0 4х≤8 x≤2 кроме того, x+1≥0 х≥-1 итого -1≤х≤2 возводим в квадрат (x+1)²=8-4x x²+2x+1=8-4x x²+6x-7=0 d=6²+4*7=36+28=64 √d=8 x₁=(-6-8)/2=-7< 0 - не удовлетворяет условию -1≤х≤2, отбрасываем х₂=(-6+8)/2=1 ответ: 1 5) √(2x)+ √(x-3)=-1 √(2x)≥0 и √(x-3)≥0, поэтому их сумма всегда ≥0 решения нет 6)√(x+17)- √(x+1)=2 x+1≥0 x≥-1 кроме того, ясно что √(x+17)> √(x+1), поэтому дополнительных проверок не требуется возводим в квадрат x+17-2√((x+17)(x+1))+x+1=4 2x+18-4=2√((x+17)(x+1)) x+7=√((x+17)(x+1)) понятно, что при x≥-1 x+7> 0, поэтому дополнительных условий не требуется, снова возводим в квадрат (x+7)²=(x+17)(x+1) x²-14x+49=x²+x+17x+17 x²-14x+49=x²+18x+17 32=4x x=8 ответ: 8 7) √(1-2x)- √(13+x)= √(x+4) 1-2x≥0 x≤0,5 x+4≥0 x≥-4 (в этим случае 13+x > 0) 1-2x≥13+x 3x≤-12 x≤-4 эти условия выполняются только в точке х=-4 проверим, является эта точка решением уравнения. √(-1-2(-√(13-4)=√(-4+4) √(-1+8)-√7=0 √7-√7=0 да х=-4 является корнем уравнения ответ: -4 8) √(3-x√(x+4))= √6 x< 0 x+4≥0 x≥-4 итого -4≤х< 0 возводим в квадрат 3-x√(x+4)= 6 x√(x+4)=-3 x²(x+4)=9 x³+4x²-9=0 (x+3)(x²+x-3)=0 x₁=-3 x²+x-3=0 d=1²+4*3=1+12=13 √d=√13 x₂=(-1-√13)/2 x₃=(-1+√13)/2> 0 отбрасываем ответ: -3 и (-1-√13)/2 9) √(5+ √(x-1))=3 x-1≥0 х≥1 возводим в квадрат 5+ √(x-1)=9 √(х-1)=4 еще раз возводим в квадрат x-1=16 x=17 ответ: 17 10) √(√(x+13))= √(17-3√x) x+13≥0 x≥-13 x≥017-3√x≥0 3√x≤17 √x≤17/3 x≤(17/3)²=289/9=32 1/9 возводим в квадрат √(x+13)= 17-3√x возводим в квадрат х+13=289-102√x+9x 8x-102√x+276=0 4x-51√x+138=0 y=√x y≥0 4y²-51y+138=0 d=51²-4*4*138=393 y₁=(51-√393)/8 x₁=((51-√393)/8)²≈15 y₂=(51+√393)/8 x₂=√((51+√393)/8)²≈78 > 32 1/9 - отбрасываем x₁=((51-√393)/8)²=(51²-102√393+393)/64=(2994-102√393)/64= (1497-51√393)/32 ответ: (1497-51√393)/32
Х^2-15-(х^2-15)^2=0; (х^2-15)(1-х^2+15)=0; х^2-15=0 или -х^2+16=0 х=+- корень из 15; х=+-4
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
DekenS104.02.2022 02:21
-
Anastasia1tsv19.09.2020 21:55
-
Викуся08407.05.2020 16:56
-
ДаняБл06.02.2022 23:37
-
SofiCoRainbow102.09.2022 19:56
-
RoxXL29.09.2020 08:50
-
Белыйснег3503.04.2021 16:51
-
qwertyuiop34210.04.2023 15:58
-
Давиденко07.03.2021 11:32
-
Anton99955500088844408.06.2020 22:33
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.