Есть ответ 👍

Сторона правильного треугольника равна 8 см. найдите радиус окружности: 1)вписанный в треугольник 2)описанной вокруг треугольника

284
404
Посмотреть ответы 3

Ответы на вопрос:

dobylarsen
4,8(29 оценок)

Радиус вписанной окружности правильного треугольника, выраженный через его сторону: r=√3a/6. радиус описанной окружности правильного треугольника, выраженный через его сторону: r=√3a/3. r=4√3/3 r=8√3/3
Duglas17
4,4(28 оценок)

Центр вписанной в правильный треугольник окружности есть точка рересечения биссектрис углов треугольника. а описанной есть точка пересечения серединных перпендикуляров. в правильном треугольнике эти точки и центры окружностей тоже. поэтому найдём длину высоты в правильном треугольнике по теореме пифагора 64-14=48 извлечём корень и будет 4 корня из 3. радиус вписанной окружности будет составлять одну треть от этой высоты, т.к. высота является и медианой. тогда радиус вписанной окружности 4\3 корней из 3 см. а описанной 8 корней из 3 делённой на 3 см.
petuhovoleg22
4,6(37 оценок)

смотрите формула высота умножить на рснование

60 делим на 10 получаем 6 .это первая сторона вотрая 60 делим на 5 равно 12 вот тебе все стороны ответ 5 и 5 .    12 и 12 все

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS