Стороны основания прямого параллелепипеда равны 4 дм и 5 дм, и угол между ними 60°. найдите диагонали параллелепипеда, если высота его 2 дм
292
316
Ответы на вопрос:
По теореме косинусов квадраты диагоналей основания параллелепипеда равны сумме квадратов сторон основания без удвоенного произведения этих сторон на косинус угла между ними. в нашем случае dо = √(16+25 - 2*4*5*0,5) =√21 (cos60° =0,5) dо = √(16+25+2*4*5*0,5)=√61 (второй угол параллелограмма равен 120°, а cos120°=-0,5) по пифагору диагонали параллелограмма равны: dп = √(21+4) = √25 = 5дм. dп = √(61+4) = √65дм ≈ 8,06дм
ответ короч
Объяснение:
Дано:
∆АВС - прямокутний (∟В = 90°).
∆А1В1С1 - прямокутний (∟В1 = 90°).
ВС = B1C1; BN - бісектриса ∟АВС;
B1N1 - бісектриса ∆А1В1С1.
Довести: ∆АВС = ∆А1В1С1.
Доведения:
За умовою ∟ABC = 90° i BN - бісектриса ∟ABC.
За означенням бкектриси кута маємо: ∟ABN = ∟NBC = 90° : 2 = 45°.
Аналогічно B1N1 - бісектриса ∟А1В1С1, тоді ∟A1B1N1 = ∟N1B1C1 = 45°.
Розглянемо ∆NBC i ∆N1B1C1:
1) BN = B1N1 (за умовою);
2) ВС = В1С1 (за умовою);
3) ∟NBC = ∟N1B1C1 = 45°.
За I ознакою piвностi трикутників маємо:
∆NВС = ∆N1B1C1. Звідси ∟C = ∟С1.
Розглянемо ∆АВС i ∆А1В1С1:
1) ∟ABC = ∟А1В1С1 = 90°;
2) ВС = B1C1;
3) ∟C = ∟С1.
За ознакою piвностi прямокутних трикутників маємо: ∆АВС = ∆А1В1С1.
Доведено.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
Nikita2000000502.08.2021 05:56
-
Zver777713.08.2020 20:33
-
Okladakey03.01.2021 06:57
-
DzhabbarovaS05.07.2021 04:21
-
svetasan7616.04.2022 15:49
-
eminka129.07.2022 18:21
-
арбуз3008.11.2020 00:59
-
яна176823.03.2021 08:08
-
dianagatina0402.04.2021 11:35
-
avrorasergeev21.10.2021 19:07
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.