13xaxa13
23.11.2022 16:17
Алгебра
Есть ответ 👍

1) f(x)=x^3-8x^2-5; x⇒3 2) f(x)=25-x^2/x^2+7x+10; x⇒5 3) f(x)=x^4-1/x^2-1; x⇒1 4) f(x)=x^2-16/x-4; x⇒4

246
419
Посмотреть ответы 2

Ответы на вопрос:

рикки8
4,4(44 оценок)

1) f’(x)=3x^2-16x x=3 f’(3)=3*3^2-16*3=3*9-48=27-48=-21 2) f’(x)= [(-2x)* (x^2+7x+10) - (25-x^2)*(2х+7)]/ (x^2+7x+10)^2= = [ (-2x)* (x+5)*(х+2) - (5-х)*(5+х)*(2х+7) ]/ [(x+2)(х+5)]^2= = [ (-2x)*(х+2) - (5-х)*(2х+7) ]/ [(x+5)*(х+2)^2]= = [ -2x^2 - 4х - 10х - 35 + 2х^2 + 7х ]/ [(x+5)*(х+2)^2]= = [ -7х-35 ]/ [(x+5)*(х+2)^2]= [ -7*(х+5) ]/ [(x+5)*(х+2)^2]= -7/(х+2)^2 x=5 f’(5)= -7/(5+2)^2=-7/7^2=-1/7 3) f’(x)= [4x^3*(x^2-1) - (x^4-1)*2х]/ (x^2-1)^2= =[4x^3*(x^2-1) - (x^2-1)*(х^2+1)*2х]/(x^2-1)^2= [4x^3 - (х^2+1)*2х]/(x^2-1)= = [4x^3 - 2х^3-2х]/(x^2-1)=(2х^3-2х)/(х^2-1)=[2х*(х^2-1)]/( х^2-1)=2х x=1 f’(1)= 2*1=2 4) f’(x)= [2х*(x-4) - (x^2-16)*1]/(х-4)^2= [2х*(x-4) - (x-4)*(х+4)]/(х-4)^2= = [2х - (х+4)]/(х-4)=(2х-х-4)/(х-4)=(х-4)/(х-4)=1 x=4 f’(4)= 1 конечно сокращение можно было выполнить сразу и тем нахождение производной, но мне было удобней делать сокращения уже в производной.
Callll
4,7(92 оценок)

ответ:

1 - а

2 - в

3 - г

объяснение : если концы графика функции устремлены вверх в 1 четверть, а вниз во вторую четверть, то k> 0

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS