Есть ответ 👍

Втреугольнике со сторонами 10, 24, 26 найдите расстояния от точки пересечения медиан до сторон и до вершин треугольника.

168
344
Посмотреть ответы 2

Ответы на вопрос:

evazorina1
4,8(48 оценок)

Обозначения. треугольник abc ac = 10; bc = 24; ab = 26;   о - точка пересечения медиан, m - середина ab; n - середина ac; k - середина bc;   прежде,  чем решать, я найду длины медиан и площадь треугольника. площадь s = 10*24/2 = 120;   ak^2 = 10^2 + 12^2 = 244; ak = 2 √61; bn^2 = 5^2 + 24^2 = 601; bn =  √601; ck = ab/2 = 13;   теперь решение.  расстояния от точки o до вершин равно 2/3 медиан.ao = ak*2/3 = 4√61/3; bo = bn*2/3 = 2 √601/3; co = cm*2/3 = 26/3; расстояние от o до катетов очевидно равно 1/3 другого катета. это видно из проекций точек m и o на катеты (m проектируется в середину катета, а проекция co равна 2/3 проекции cm);   но для систематического решения лучше рассуждать так. площади треугольников boc; boa; aoc равны s/3 = 40; поэтому искомые расстояния от точки o до сторон равны (s/3)*2/(сторона); до ac: = 40*2/10 = 8; до bc: = 40*2/24 = 10/3; до ab: = 40*2/26 = 40/13; таким способом находятся все три расстояния
axudatyan
4,8(47 оценок)

Наверное условие не точно или неправильно но если заменить угол abc на abd, то тогда все итак,  ∠abd=40° и  ∠сbd=10°, тогда т. к. bd - высота то треугольники abd и сbd прямоугольные, в мы знаем что сумма углов прилежащих к гипотенузе равна 90°, отсюда  ∠bad=90°-40°=50°, а  ∠abc=40°+10°=50°, поэтому  ∠abc=∠bac=50°⇒треугольник abc является равнобедренным по двум углам с основание ab.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS