Аданы уравнения типа f(x,y)=0: у–3х+ 4=0. у–х2+ 6х–8=0 х2+ у2–16=0 изобразить графики с оответствующих функций и отметить на координатной плоскости решение каждого уравнения
Ответы на вопрос:
Дано: прямая а, т. М∉а
Доказать: существует единственная прямая b||a, M∈b
Доказательство:
Через прямую а и точку, не лежащую на ней, можно провести единственную плоскость α (Рис.). В плоскости α можно провести единственную прямую b, параллельную а, проходящую через точку M (из аксиомы планиметрии о параллельных прямых). Существование такой прямой доказано.
Докажем единственность такой прямой. Предположим, что существует другая прямая с, проходящая через точку M и параллельная прямой а. Пусть параллельные прямые а и с лежат в плоскости β. Тогда плоскость β проходит через точку M и прямую а. Но через точку M и прямую а проходит единственная плоскость (в силу теоремы 1). Значит, плоскости β и α совпадают. Из аксиомы параллельных прямых, следует, что прямые b и с совпадают, так как в плоскости существует единственная прямая, проходящая через данную точку и параллельная заданной прямой. Единственность доказана.
Я сначала, конечно, подумал воспользоваться теорией неэлементарной школьной геометрии, а аналитической, но так как программа десятого класса не нацелена на глубокое понимание основ взаимного расположения прямых в пространстве, то было решено ограничиться понятным для учащихся среднего общего образования языком:)
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
katerinasem25120.05.2020 18:40
-
Невидимка00315.10.2022 13:43
-
nicoguy11.04.2021 18:16
-
svetlanasalamon14.06.2021 17:50
-
khmelyuko24.03.2023 11:41
-
HolyKaktys03.11.2022 07:54
-
sayferbil28.02.2022 15:58
-
КэтЗед13.03.2023 12:39
-
Food798342724.10.2021 23:39
-
Ilyamoni09.09.2022 03:56
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.