RoxXL
24.10.2022 06:50
Алгебра
Есть ответ 👍

Верно ли, что любое положительное рациональное число можно представить как отношение произведения факториалов (не обязательно разных) простых чисел? например

205
436
Посмотреть ответы 2

Ответы на вопрос:


Верно. покажем, что любое натуральное число n можно представить в указанном виде (а  значит, и отношение натуральных чисел будет представимо в таком виде). если n = 1, можно написать, например, n = 2! / 2! по основной теореме арифметики любое натуральное число, большее 1,  однозначно (с точностью до порядка сомножителей) представимо в виде произведения простых множителей: (alpha - номер простого числа; все простые числа расположены в порядке возрастания) докажем требуемое утверждение индукцией по alpha_k. база: для alpha_k = 1 утверждение очевидно: первое простое число совпадает со своим факториалом: 2 = 2! переход. пусть для всех alpha_k < m утверждение выполнено. пусть n = q * p^l, причем номер  p равен m и q не делится на p. 1) q по предположению представимо в нужном виде. 2)  заметим, что p  = p! / (p- (p-1)! не содержит простых чисел с номерами, не меньших m, так что по предположению индукции представимо в виде дроби нужного вида. тогда и p! /(p-1)! представимо в нужном виде. 3) остается перемножить дробь для q и l дробей для p. переход доказан.
topcekstrimer
4,7(56 оценок)

Дададададададдааалаадда во
Решите письменно в тетради

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS