Решить . боковые ребра правильной треугольной пирамиды sabc наклонены к плоскости основания под углом 45 градусов. шар касается плоскости основания abc в точке a и, кроме того касается вписанного в пирамиду шара. через центр первого шара и высоту bd основания проведена плоскость. найти угол наклона этой плоскости к плоскости основания.
283
318
Ответы на вопрос:
(нудная . здесь и далее курсив можно не читать.) центр вписанного шара o1 проектируется на основание abc в центр правильного треугольника abc (пусть это o2) - это следует из того, что пирамида "переходит в себя" при повороте вокруг so2 на 120°; далее, линия соединяющая центры шаров oo1 проектируется на основание на отрезок ao2. этот отрезок - радиус описанной вокруг abc окружности, он равен удвоенному радиусу вписанной в abc окружности и равен высоте пирамиды, поскольку ребро наклонено к основанию под углом в 45 °. далее, прямая bd - это то же самое, что и прямая o2d, где d - середина ac. ясно, что o2d перпендикулярно плоскости aod, так как перпендикулярно двум прямым в этой плоскости - ac и oa (oa перпендикулярно всей плоскости abc). поэтому нужный угол - это угол ado, и для его вычисления надо найти радиус шара с центром в o. я обозначу этот радиус r, а радиус вписанного в пирамиду шара r.1) пусть радиус вписанной в abc окружности равен 1. то есть o2d = 1; ( это не ограничивает общность.) тогда ao2 = 2 = so2; сторона основания равна 2 √3; площадь правильного тр-ка в основании sabc = (2√3)^2*√3/4 = 3√3; апофема равна sd = √(2^2 + 1^2) = √5; площадь боковой грани равна 2√3*√5/2 = √15; площадь полной поверхности пирамиды равна spol = 3√3(√5 + 1); объем пирамиды равен v = sabc*so2/3 = (3√3)*2/3 = 2 √3; отсюда радиус вписанного в пирамиду шара равен r = 3v/spol = 2/( √5 + 1); (это соотношение совершенно аналогично известному s = pr для треугольника. и получается оно точно так же - надо соединить центр вписанного шара с вершинами и рассматривать пирамиду как сумму - в данном случае - четырех пирамид с высотами, равными радиусу вписанного шара. отсюда v = spol*r/3; )2) фигура aoo1o2 - прямоугольная трапеция. её основания равны r и r, а боковые стороны r + r и 2 (вот здесь учитывается касание шаров, ясно, что точка касания лежит на линии центров). поскольку r уже вычислено, найти r нетрудно. (r + r)^2 = (r - r)^2 + 2^2; или 4rr = 4; r = 1/r; (занятное соотношение); r = ( √5 + 1)/2; поскольку ad = √3; то искомый угол ado = ф имеет тангенсtg(ф) = (√5 + 1)/2 √3;
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
regroom02.04.2021 13:39
-
DeathNomberOne24.07.2021 07:42
-
crisisd03.05.2023 17:52
-
Мурик12331.01.2023 13:39
-
saschaalexandrova04.09.2022 21:23
-
rayyana1409.07.2021 17:37
-
Roma47314.08.2021 14:03
-
Kik192424.10.2021 21:16
-
shvok12.02.2022 04:19
-
kazbek605.02.2022 17:35
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.