Начерти прямоугольник со сторонами 4см и 3см.найдите его периметр.начерти квадрат,имеющий такой же периметр.
Ответы на вопрос:
25. 7 : 8
Объяснение:
24. Проведём общую касательную к окружностям в точке O. Для меньшей окружности угол между касательной и хордой OC равен половине дуги OC, то есть равен вписанному углу ∠OBC. Для большей окружности угол между касательной и хордой OC₁ равен половине дуги OC₁, то есть равен вписанному углу ∠OB₁C₁. Поскольку хорды OC и OC₁ лежат на одной прямой, угол между касательной и этими хордами один и тот же. Углы ∠OBC и ∠OB₁C₁ равны одному и тому же углу, значит, они равны между собой. Тогда BC || B₁C₁.
По теореме синусов . Поскольку радиусы не равны, то и BC ≠ B₁C₁.
Противолежащие стороны четырёхугольника параллельны и не равны, следовательно, это трапеция, что и требовалось доказать.
25. Продлим биссектрису DF до пересечения с прямой BC (точку пересечения обозначим S), проведём высоту CH в треугольнике DCS. Обозначим площади следующим образом: .
Заметим, что ∠ADS = ∠DSC как накрест лежащие, ∠ADS = ∠SDC по условию. Тогда ∠DSC = ∠SDC ⇒ треугольник DCS равнобедренный ⇒ DH = HS.
Треугольники ADF и BSF подобны по вертикальным углам ∠AFD и ∠BFS и накрест лежащим углам ∠ADF и ∠FSB с коэффициентом подобия k = AF : FB = 2. Тогда и DF : FS = 2, а .
Треугольники CHS и BFS подобны по общему углу ∠S и соответственным прямым углам ∠CHS и ∠BFS. Коэффициент подобия . Тогда .
CH — медиана треугольника DCS, значит, . Но .
Искомое отношение .
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
кракодиллох126.04.2022 19:30
-
shildebaev0106.07.2022 07:29
-
arsenlitvinov04.08.2021 22:41
-
nika5555101.03.2022 21:56
-
acrapovic27.05.2021 04:03
-
Mimi160224.05.2022 05:25
-
saraikinacaterina09.08.2021 13:58
-
Polya6Б10.05.2020 10:58
-
Katerka28.01.2020 05:05
-
Dar200203.01.2022 18:37
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.