Основанием пирамиды sabcd является ромб со стороной √30 и углом ваd, равным arccos 3/4. ребро sd перпендикулярно основанию, а ребро sb образует с основанием угол 60 градусов. найдите радиус сферы, проходящей через точки а, в, с и середину ребра sb. в ответ запишите r².
228
281
Ответы на вопрос:
Ну, много, но эта совсем не сложная.логически она решается "на раз". все, что надо сообразить - что середина sb - пусть это точка e - проектируется на основание прямо в центр ромба h (точку пересечения диагоналей ac и bd). это означает, что плоскость abc и плоскость aec - перпендикулярны. сечения сферы этими перпендикулярными плоскостями - это просто окружности, описанные вокруг треугольников abc (в плоскости abc) и aec (в плоскости aec). то есть на сфере есть две окружности с общей хордой ac (радиусы окружностей очевидно вычисляются из условия), расположенные в перпендикулярных плоскостях. через середину ac перпендикулярно ac проходит плоскость, очевидно содержащая центр сферы - эта плоскость - место точек, равноудаленных от a и c, и в ней центр лежит на таком же расстоянии от b и e (которые тоже лежат в этой плоскости, разумеется). тут главное - не выдумать случайно, что центр о лежит в плоскости abc - это не так.а это означает, что центральное сечение является окружностью, описанной вокруг треугольника beb1, где bb1 - диаметр окружности, описанной вокруг abc. точка b1 лежит на продолжении bd. получается, что для решения надо 1) найти диаметр окружности, описанной вокруг abc, bb1 = d; 2) найти радиус r окружности, описанной вокруг треугольника beb1. это и будет искомый радиус сферы. теперь можно считать.пусть a = √30; α = arccos(3/4); для треугольника abc x = bh = a*sin(α/2); bb1 = d = a/sin(α/2); это просто теорема синусов для abc; точно так же для треугольника beb1 eh = bh*tg(60°) = x*√3; 2*r*sin(60°) = eb1; или, если возвести в квадрат, 4*r^2*(3/4) = eb1^2 = eh^2 + hb1^2 = (d - x)^2 + (x*√3)^2; или 3*r^2 = (d - x)^2 + 3*x^2; при этом d = a/sin(α/2); x = a*sin(α/2); осталось подставить. 3*r^2 = a^2*((1/sin(α/2) - sin(α/2))^2 + 3*(sin(α/2))^2) = = a^2*((1/2+cos(α)/2)^2/((1/2-cos(α)/2)) + 3*(1/2-cos(α)/2)); = (подставляем числа) = 30*((7/8)^2/(1/8) + (3/8)) = 30*(49 + 3)/8 = 3*10*52/8; r^2 = 520/8 = 65;
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
Хаурма726.03.2023 05:31
-
Fox111430.06.2022 00:37
-
эдрош14.05.2021 16:50
-
nikita22892822.12.2020 04:52
-
RiilSlooozhnaa09.03.2020 04:27
-
Света2017724.08.2021 12:34
-
Miss445507.02.2020 12:50
-
AnnaMax11109.01.2020 08:53
-
вика601017.12.2022 22:07
-
MASCAM25.04.2022 04:06
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.