Есть ответ 👍

Длина вектора ав равна 7 , длина вектора ас равна 4. косинус угла между этими векторами равен -1/56. найдите длину вектора ав+ас

215
441
Посмотреть ответы 2

Ответы на вопрос:

vikakotova3
4,6(61 оценок)

построим вектор, равный сумме векторов ав и ас по правилу параллелограмма. угол   α   между векторами тупой (так как косинус угла отрицательный), значит в формуледля нахождения вектора суммы по теореме косинусов применяется значение косинуса острого угла (180-α).

|ab+ac| = √(ab²+ac² - 2*ab*ac*cos(180-α)) или

|ab+ac| = √(49+16-2*7*4*1/56) = √64 = 8.


1.в трапецию можно вписать окружность тогда, когда сумма оснований равна сумме боковых сторон.

следовательно, можно найти вторую боковую сторону:

6+27=13+х

33=13+х

х=33-13

х=20

20 см - вторая боковая сторона

2. радиус вписанной окружности в трапецию равен половине высоты трапеции.

высота трапеции неизвестна. её можно узнать, найдя площадь трапеции.

формула площади трапеции по четырем сторонам :

s= \frac{(a+b)}{2} * \sqrt{c^{2}-(\frac{(b-a)^{2}+c^{2} -d^{2}   }{2(b-a)})^2 }

подставляем все значения в эту формулу, учитывая, что а=6, б=27см, с=13 см, д=20 см, и находим площадь, которая равна 198 см2.

3. ну а теперь можно приступить к нахождению высоты, зная площадь и основания.

у нахождения площади также существует формула: (а+б)/2*высоту

подставляем все известные значения.

(6+27)/2*высоту=198

33/2*высоту=198

высота=198*2/33

высота равна 12 см.

4. радиус круга: 12/2 = 6 см.

о т в е т: 6 см

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS