Ответы на вопрос:
Объяснение:
общем случае, геометрическое место точек формулируется параметрическим предикатом, аргументом которого является точка данного линейного Параметры предиката могут носить различный тип. Предикат называется детерминантом геометрического места точек. Параметры предиката называются дифференциалами геометрического места точек (не путать с дифференциалом в анализе).
Роль дифференциалов во введении видовых различий в фигуру. Количество дифференциалов может быть любым; дифференциалов может и вовсе не быть.
Если заданы детерминант {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots ), где {\displaystyle M}M — точка, {\displaystyle a,\;b,\;c,\;\ldots }a,\;b,\;c,\;\ldots — дифференциалы, то искомую фигуру {\displaystyle A}A задают в виде: «{\displaystyle A}A — геометрическое место точек {\displaystyle M}M, таких, что {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots )». Далее обычно указывается роль дифференциалов, им даются названия применительно к данной конкретной фигуре. Под собственно фигурой понимают совокупность (множество) точек {\displaystyle M}M, для которых для каждого конкретного набора значений {\displaystyle a,\;b,\;c,\;\ldots }a,\;b,\;c,\;\ldots высказывание {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots ) обращается в тождество. Каждый конкретный набор значений дифференциалов определяет отдельную фигуру, каждую из которых и всех их в совокупности именуют названием фигуры, которая задаётся через ГМТ.
В словесной формулировке предикативное высказывание озвучивают литературно, то есть с привлечением различного рода оборотов и т. д. с целью благозвучия. Иногда, в случае детерминантов, вообще обходятся без буквенных обозначений.
Пример: параболу зададим как множество всех таких точек {\displaystyle M}M, что расстояние от {\displaystyle M}M до точки {\displaystyle F}F равно расстоянию от {\displaystyle M}M до прямой {\displaystyle l}l. Тогда дифференциалы параболы — {\displaystyle F}F и {\displaystyle l}l; детерминант — предикат {\displaystyle P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l))}P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l)), где {\displaystyle \rho }\rho — расстояние между двумя точками (метрика), {\displaystyle \rho _{l}}\rho _{l} — расстояние от точки до прямой. И говорят: «Парабола — геометрическое место точек {\displaystyle M}M, равноудалённых от точки {\displaystyle F}F и прямой {\displaystyle l}l. Точку {\displaystyle F}F называют фокусом параболы, а прямую {\displaystyle l}l — директрисой».
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
olysenko29002.05.2021 06:17
-
AnnaMax11123.01.2022 01:13
-
vuqar20325.04.2023 02:24
-
MaaximKa22805.10.2021 17:04
-
Пташник16.06.2020 17:58
-
slothy06.06.2020 16:01
-
кошачка27827.03.2020 12:55
-
7kotik7myr7myr707.02.2023 05:14
-
zepoo25.05.2022 23:30
-
дура5555511.05.2021 07:48
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.