Есть ответ 👍

1.Шар радиуса 4 см прикасается к граням двугранного угла. с Найдите расстояние между точками соприкосновения, если двугранный угол равен 90°

227
365
Посмотреть ответы 2

Ответы на вопрос:


ответ:Рассмотрим сечение плоскостью, проходящей через ось симметрии двугранного угла и точки соприкосновения шара с гранями. Это сечение будет прямоугольником.

По условию, радиус шара равен 4 см, а двугранный угол равен 90°. Так как шар прикасается к граням, то центр шара лежит на оси симметрии двугранного угла.

Рассмотрим одну из граней двугранного угла. Она является прямоугольным треугольником, так как угол между осью симметрии и гранью равен 90°.

Теперь можно применить теорему Пифагора для прямоугольного треугольника, состоящего из радиуса шара (гипотенузы), расстояния между осью симметрии и точкой соприкосновения шара с гранью (одна из катетов), и расстояния между точкой соприкосновения и вершиной грани (второй катет). Обозначим это расстояние как x.

Итак, применяя теорему Пифагора, получим:

4^2 = x^2 + x^2

16 = 2x^2

8 = x^2

x = √8 ≈ 2.83 см

Таким образом, расстояние между точками соприкосновения шара с гранями двугранного угла равно приблизительно 2.83 см.

Пошаговое объяснение:

6luille9
4,5(53 оценок)

15—-3
20——-х
15*3:20=2,25

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS