Есть ответ 👍

, нужно очень !! Без спама! Дайте полные ответы

200
412
Посмотреть ответы 2

Ответы на вопрос:

Olesya1223
4,6(48 оценок)

ответ: Задача 4:

Для знаходження суми перших десяти членів арифметичної прогресії, спочатку нам потрібно знайти різницю (d) прогресії. Ми можемо використати дані про другий (a₂) та восьмий (a₈) члени прогресії, щоб знайти цю різницю.

Знаємо, що:

a₂ = 6

a₈ = 24

Ми можемо використати формулу для n-го члена арифметичної прогресії, щоб знайти різницю:

aₙ = a₁ + (n-1)d

Підставимо значення другого та восьмого членів:

a₂ = a₁ + (2-1)d

6 = a₁ + d

a₈ = a₁ + (8-1)d

24 = a₁ + 7d

Тепер ми маємо систему двох рівнянь з двома невідомими (a₁ та d). Вирішимо її:

6 = a₁ + d - (1)

24 = a₁ + 7d - (2)

Віднімемо рівняння (1) від рівняння (2):

24 - 6 = (a₁ + 7d) - (a₁ + d)

18 = 6d

d = 18 / 6

d = 3

Тепер, коли ми знаємо значення різниці (d = 3), ми можемо знайти перший член (a₁) прогресії, використовуючи рівняння (1):

6 = a₁ + 3

a₁ = 6 - 3

a₁ = 3

Тепер, коли ми знаємо значення першого члена (a₁ = 3) та різниці (d = 3), ми можемо знайти суму перших десяти членів прогресії, використовуючи формулу суми арифметичної прогресії:

Sₙ = (n/2)(2a₁ + (n-1)d)

Підставимо значення:

S₁₀ = (10/2)(2*3 + (10-1)3)

S₁₀ = 5(6 + 93)

S₁₀ = 5(6 + 27)

S₁₀ = 5(33)

S₁₀ = 165

Отже, сума перших десяти членів арифметичної прогресії становить 165.

Задача 5:

Щоб знайти значення параметрів b і c, при яких вершина параболи знаходиться в точці А(2, 1), ми використаємо відомості про вершину параболи у канонічному вигляді, який задається рівнянням:

y = a(x - h)² + k,

де (h, k) - координати вершини параболи.

У нашому випадку, точка А(2, 1) є вершиною параболи, тому (h, k) = (2, 1). Замість a, ми маємо виразити параметри b і c.

Підставимо значення (h, k) в рівняння параболи:

y = -2x² + bx - c,

1 = -2(2)² + b(2) - c,

1 = -8 + 2b - c.

Звідси ми отримуємо перше рівняння:

2b - c = 9. - (1)

Також, ми можемо використати відомі координати точки А(2, 1) та рівняння параболи:

y = -2x² + bx - c,

1 = -2(2)² + b(2) - c,

1 = -8 + 2b - c.

Звідси ми отримуємо друге рівняння:

2b - c = 9. - (2)

Ми отримали два рівняння (1) і (2) з двома невідомими b і c. Розв'яжемо цю систему рівнянь:

(1) - (2):

2b - c - (2b - c) = 9 - 9,

0 = 0.

Це означає, що обидва рівняння еквівалентні і не дають нам додаткових умов на параметри b і c. Таким чином, параметри b і c можуть приймати будь-які значення.

Отже, немає конкретних значень параметрів b і c, при яких вершина параболи знаходиться в точці А(2, 1).

Задача 6:

Для знаходження першого члена (a) і знаменника (r) геометричної прогресії, ми використаємо систему рівнянь, яка складається з двох рівнянь, отриманих з наданої інформації.

Рівняння 1: b + b = 756

Рівняння 2: bs - b% + b = 567

Зауважте, що в рівнянні 1 ми маємо два однакові члени, тому ми можемо спростити його:

2b = 756

Розділимо обидві частини на 2:

b = 756 / 2

b = 378

Тепер, коли ми знаємо значення b, підставимо його в рівняння 2:

378s - 37.8 + 378 = 567

Спростимо рівняння:

378s + 340.2 = 567

Віднімемо 340.2 від обох боків рівняння:

378s = 567 - 340.2

378s = 226.8

Розділимо обидві частини на 378:

s = 226.8 / 378

s ≈ 0.6

Таким чином, ми отримали значення знаменника геометричної прогресії s ≈ 0.6.

Для знаходження першого члена (a) можна використовувати будь-яке з двох рівнянь, оскільки вони взаємозамінні:

a = b / r

a = 378 / 0.6

a ≈ 630

Отже, перший член геометричної прогресії a ≈ 630, а знаменник s ≈ 0.6.

Амаpил1768
4,6(35 оценок)

1) 3a(2-b) = 3a×2 - 3a×b = 5a - 3ab

2) (5a-6b)(6b-5a)= 5a×6b+5a×(-5a) -6b×6b-6b×(-5a)=6b5a-25a-36b+6b5b

3)(x-y)(x+y)(x-y) = (x×x+x×y-y×x-y×y)(x-y)=(x²+xy-yx-y²)(x-y)=

x²×x+x²×(-y)+xy×x+xy×(-y) -yx×x-yx×(-y) -y²×x-y²×(-y)=

x³-x²y+x²y-xy²-yx²-y²x-y²x+y³

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS