F(x) = x^2*корень из (1-x^2)
Найти точки экстремума функции. можно в тетради
Ответы на вопрос:
Для нахождения точек экстремума функции f(x) = x^2√(1-x^2) нужно найти ее производную и приравнять ее к нулю:
f(x) = x^2√(1-x^2)
f'(x) = 2x√(1-x^2) - x^3 / √(1-x^2)
Теперь приравняем производную к нулю и решим полученное уравнение:
2x√(1-x^2) - x^3 / √(1-x^2) = 0
2x(1-x^2) - x^3 = 0
x(2-3x^2) = 0
Таким образом, точки экстремума функции находятся в точках x = 0, x = √(2/3) и x = -√(2/3).
Чтобы убедиться, что эти точки являются точками минимума или максимума, необходимо проанализировать знак производной в окрестности каждой точки. Можно использовать таблицу знаков, которая будет такой:
| x | -√(2/3) | 0 | √(2/3) |
|||||
| f'(x) | + | 0 | - |
| f(x) | - | 0 | + |
Таким образом, точка x = 0 является точкой минимума, а точки x = √(2/3) и x = -√(2/3) являются точками максимума.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
кубанычбековабермет05.05.2021 13:58
-
Anyutahka22.12.2021 17:52
-
Данил2233505.01.2023 12:57
-
Slime2805200609.07.2020 07:00
-
o12345678920.03.2020 14:07
-
Rustam788719.11.2020 10:51
-
tomikyrmash09.07.2020 12:56
-
cat252209.07.2020 22:13
-
ХЗшкин05.10.2022 23:19
-
bigofficerjor27.05.2023 07:30
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.