Ответы на вопрос:
Щоб обчислити інтеграл ∫(2x+1)³ dx від 0 до 1, використаємо формулу для інтегрування степеневої функції:
∫xⁿ dx = (xⁿ⁺¹)/(n+1) + C,
де n ≠ -1 і C - константа інтегрування.
Застосуємо цю формулу до кожного доданка у виразі (2x+1)³:
∫(2x+1)³ dx = ∫8x³ + 12x² + 6x + 1 dx
Застосуємо формулу для кожного доданка:
∫8x³ dx = (8/4)x⁴ = 2x⁴
∫12x² dx = (12/3)x³ = 4x³
∫6x dx = 6/2)x² = 3x²
∫1 dx = x
Тепер, обчислимо відповідний вираз для кожного доданка:
∫(2x+1)³ dx = 2x⁴ + 4x³ + 3x² + x
Щоб знайти значення від 0 до 1, вставимо межі інтегрування:
∫(2x+1)³ dx = 2(1)⁴ + 4(1)³ + 3(1)² + (1) - (2(0)⁴ + 4(0)³ + 3(0)² + (0))
= 2 + 4 + 3 + 1 - 0 - 0 - 0 - 0
= 10.
Таким чином, значення інтегралу ∫(2x+1)³ dx від 0 до 1 дорівнює 10.
∫xⁿ dx = (xⁿ⁺¹)/(n+1) + C,
де n ≠ -1 і C - константа інтегрування.
Застосуємо цю формулу до кожного доданка у виразі (2x+1)³:
∫(2x+1)³ dx = ∫8x³ + 12x² + 6x + 1 dx
Застосуємо формулу для кожного доданка:
∫8x³ dx = (8/4)x⁴ = 2x⁴
∫12x² dx = (12/3)x³ = 4x³
∫6x dx = 6/2)x² = 3x²
∫1 dx = x
Тепер, обчислимо відповідний вираз для кожного доданка:
∫(2x+1)³ dx = 2x⁴ + 4x³ + 3x² + x
Щоб знайти значення від 0 до 1, вставимо межі інтегрування:
∫(2x+1)³ dx = 2(1)⁴ + 4(1)³ + 3(1)² + (1) - (2(0)⁴ + 4(0)³ + 3(0)² + (0))
= 2 + 4 + 3 + 1 - 0 - 0 - 0 - 0
= 10.
Таким чином, значення інтегралу ∫(2x+1)³ dx від 0 до 1 дорівнює 10.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
LadySmail27.06.2020 14:18
-
9Единорожка111111101.12.2020 02:18
-
5alo30.01.2023 02:32
-
АринаДаутова26.03.2020 04:23
-
Yourstudentbook20.04.2021 11:00
-
Alexexey13207.05.2022 01:25
-
xeniathcelykh12.11.2020 18:26
-
linkarain1303.03.2023 17:05
-
lemenukillya08.07.2021 05:28
-
dimaandreevich09.01.2021 01:53
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.