Рiвнобедрений трикутник, бічна сторона якого дорівнює b, а кут при основі дорівнює β, обертається навколо прямої, що містить його основу. Знайдіть площу поверхні тіла обертання.
Ответы на вопрос:
Площа поверхні тіла обертання може бути знайдена за до формули:
S = 2π∫ab(x)dx,
де a - половина довжини основи рівнобедреного трикутника, яка дорівнює b/(2tan(β/2)).
Функція ab(x) описує довжину дуги, яку трикутник обертається, і може бути знайдена за до теореми Піфагора:
ab(x) = √(x^2 + b^2/4) + √(x^2 + b^2/4).
Тоді:
S = 2π∫ab(x)dx
= 2π∫0^a √(x^2 + b^2/4) + √(x^2 + b^2/4) dx
= 4π∫0^a √(x^2 + b^2/4) dx.
Здійснюємо підстановку x = (b/2)tan(t):
dx = (b/2)sec^2(t)dt,
x = 0 відповідає t = 0,
x = a відповідає t = atan(2a/b).
Тоді:
S = 4π∫0^atan(2a/b) √[b^2/4tan^2(t) + b^2/4] (b/2)sec^2(t) dt
= 2πb ∫0^atan(2a/b) [tan^2(t) + 1] sec(t) dt.
Зробимо ще одну підстановку: u = sec(t), du = sec(t)tan(t)dt.
Тоді:
S = 2πb ∫1^sec(atan(2a/b)) (u^2 - 1) du
= 2πb [u^3/3 - u]1^sec(atan(2a/b))
= 2πb [sec^3(atan(2a/b))/3 - sec(atan(2a/b))].
Враховуючи те, що sec(atan(x)) = √(x^2 + 1), отримуємо:
S = 2πb [(2a/b)^3/3 + 2a/b - 2√(a^2 + b^2/4)].
Отже, площа поверхні тіла обертання рівнобедреного трикутника дорівнює 2πb [(2a/b)^3/3 + 2a/b - 2√(a^2 + b^2/4)].
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
ashixminas29.08.2021 00:55
-
гулллллл14.02.2023 22:26
-
XXL1806.02.2022 01:22
-
орионер20.02.2020 23:45
-
татарочка2127115.01.2022 14:25
-
nata111610.06.2022 21:48
-
AltoДима16.04.2023 13:28
-
edynorozhok18.04.2021 03:09
-
schabuneva10.08.2021 13:35
-
deulinslava2627.05.2023 14:41
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.