Есть ответ 👍

нужно выполнить это задание

248
267
Посмотреть ответы 1

Ответы на вопрос:


ответ:

алгоритм исследования функции двух переменных на экстремум

функция z = f(x,y) имеет максимум в точке m0(x0; y0), если f(x0; y0) > f(x; y) для всех точек (x; y), достаточно близких к точке (x0; y0) и отличных от неё. функция z = f(x,y) имеет минимум в точке m0(x0; y0), если f(x0; y0) < f(x; y) для всех точек (x; y), достаточно близких к точке (x0; y0) и отличных от неё. максимум и минимум функции называются экстремумами функции.  

исследование функции двух переменных на экстремум проводят по следующей схеме.  

1. находят частные производные dz/dx и dz/dy.  

2. решают систему уравнений:

и таким образом находят критические точки функции.  

3. находят частные производные второго порядка:

4. вычисляют значения этих частных производных второго порядка в каждой из найденных в п.2 критических точках m(x0; y0).

5. делаю вывод о наличии экстремумов:  

а) если ac – b2 > 0 и a < 0 , то в точке m имеется максимум;  

б) если ac – b2 > 0 и a > 0 , то в точке m имеется минимум;  

в) если ac – b2 < 0, то экстремума нет;  

г) если ac – b2 = 0, то вопрос о наличии экстремума остается открытым;

пример №1. найти экстремумы функции f(x,y)=x3+xy2+x2+y2 и определить по критерию сильвестра их тип.  

решение.  

1. найдем первые частные производные.  

 

 

2. решим систему уравнений.  

3x2+2x+y2=0  

2xy+2y=0  

получим:  

а) из первого уравнения выражаем x и подставляем во второе уравнение:  

x = -1  

y2+1=0  

данная система уравнений не имеет решения.  

б) из первого уравнения выражаем y и подставляем во второе уравнение:  

 

 

или  

 

 

или  

откуда x1 = -2/3; x2 = 0; x3 = -2/3; x4 = 0  

данные значения x подставляем в выражение для y. получаем: y1 = 0; y2 = 0; y3 = 0; y4 = 0  

количество критических точек равно 2: m1(-2/3; 0), m2(0; 0)  

3. найдем частные производные второго порядка.  

 

 

 

4. вычислим значение этих частных производных второго порядка в критических точках m(x0; y0).  

вычисляем значения для точки m1(-2/3; 0)  

 

 

 

ac - b2 = -4/3 < 0, то экстремума нет.  

вычисляем значения для точки m2(0; 0)  

 

 

 

ac - b2 = 4 > 0 и a > 0 , то в точке m2(0; 0) имеется минимум z(0; 0) = 0  

вывод: в точке m2(0; 0) имеется минимум z(0; 0) = 0

пример №2. исследовать функцию на экстремум классическим методом: z=8x2+2xy-5x+6.

пошаговое объяснение:

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS