upf300804
09.04.2023 08:11
Алгебра
Есть ответ 👍

с с заданием по алгебре
3 задание,докажите тождества

153
260
Посмотреть ответы 3

Ответы на вопрос:

Коцюрбей
4,6(53 оценок)

Объяснение:

3.

a)\ \frac{cos^4\alpha -sin^4\alpha }{cos^2\alpha } +2tg^2\alpha =\frac{(cos^2\alpha -sin^2\alpha )*(cos^2\alpha +sin^2\alpha )}{cos^2\alpha } +2tg2\alpha =\\=\frac{(cos^2\alpha -sin^2\alpha)*1 }{cos^2\alpha } +2tg^2\alpha=\frac{cos^2\alpha -sin^2\alpha }{cos^2\alpha } +2tg^2\alpha= 1-tg^2\alpha +2tg^2\alpha =\\=1+tg^2\alpha =1+\frac{sin^2\alpha }{cos^2\alpha } =\frac{cos^2\alpha+sin^2\alpha }{cos^2\alpha } =\frac{1}{cos^2\alpha } .

b)\ \frac{tg\alpha }{tg\alpha +ctg\alpha } =\frac{tg\alpha }{\frac{sin\alpha }{cos\alpha }+\frac{cos\alpha }{sin\alpha } } =\frac{\frac{sin\alpha }{cos\alpha } }{\frac{sin^2\alpha +cos^2\alpha }{sin\alpha *cos\alpha } } =\frac{sin\alpha }{\frac{1}{sin\alpha } } =sin^2\alpha .

a)\ \frac{sin^4\alpha -cos^4\alpha }{sin^2\alpha } +2ctg^2\alpha =\frac{(sin^2\alpha -cos^2\alpha )*(sin^2\alpha +cos^2\alpha )}{sin^2\alpha } +2ctg^2\alpha =\\=\frac{(sin^2\alpha -cos^2\alpha)*1 }{sin^2\alpha } +2ctg^2\alpha =\frac{sin^2\alpha -cos^2\alpha }{sin^2\alpha } +2ctg^2\alpha =1-ctg^2\alpha +2ctg^2\alpha =\\=1+ctg^2\alpha =1+\frac{cos^2\alpha }{sin^2\alpha } =\frac{sin^2\alpha +cos^2\alpha }{sin^2\alpha } =\frac{1}{sin^2\alpha } .

b)\ \frac{ctg\alpha }{tg\alpha +ctg\alpha } =\frac{ctg\alpha }{\frac{sin\alpha }{cos\alpha} +\frac{cos\alpha }{sin\alpha } } } =\frac{\frac{cos\alpha }{sin\alpha } }{\frac{sin^2\alpha +cos^2\alpha }{sin\alpha *cos\alpha } } =\frac{cos\alpha }{\frac{1}{cos\alpha } } =cos^2\alpha .

bekovmusa07p0c1pn
4,7(74 оценок)

Использовали формулы:   sin^2a+cos^2a=1\ \ ,\ \ tga=\dfrac{sina}{cosa}\ \ ,\ \ ctga=\dfrac{cosa}{sina}\ \ ,\ \ a^2-b^2=(a-b)(a+b)  

\displaystyle 1)\ \ \frac{cos^4a-sin^4a}{cos^2a}+2tg^2a=\frac{1}{cos^2a}frac{cos^4a-sin^4a}{cos^2a}+2tg^2a=\frac{(cos^2a-sin^2a)(\overbrace{cos^2a+sin^2a}^{1})}{cos^2a}+2tg^2a==\frac{cos^2a-sin^2a}{cos^2a}+2tg^2a=\frac{cos^2a}{cos^2a}-\frac{sin^2a}{cos^2a}+2tg^2a=1-tg^2a+2tg^2a==1+tg^2a=\frac{1}{cos^2a}frac{1}{cos^2a}=\frac{1}{cos^2a}

\displaystyle 2)\ \ \frac{tga}{tga+ctga}=sin^2afrac{tga}{tga+ctga}=\frac{\dfrac{sina}{cosa}}{\dfrac{sina}{cosa}+\dfrac{cosa}{sina}}=\frac{sina\cdot cosa\cdot sina}{cosa\, (\underbrace{sin^2a+cos^2a}_{1})}=sin^2asin^2a=sin^2a

\displaystyle 3)\ \ \frac{sin^4a-cos^4a}{sin^2a}+2ctg^2a=\frac{1}{sin^2a}frac{sin^4a-cos^4a}{sin^2a}+2ctg^2a=\frac{(sin^2a-cos^2a)(\overbrace{sin^2a+cos^2a}^{1})}{sin^2a}+2ctg^2a==\frac{sin^2a-cos^2a}{sin^2a}+2ctg^2a=\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}+2ctg^2a=1-ctg^2a+2ctg^2a==1+ctg^2a=\frac{1}{sin^2a}frac{1}{sin^2a}=\frac{1}{sin^2a}

\displaystyle 4)\ \ \frac{ctga}{tga+ctga}=cos^2afrac{ctga}{tga+ctga}=\frac{\dfrac{cosa}{sina}}{\dfrac{sina}{cosa}+\dfrac{cosa}{sina}}=\frac{cosa\cdot cosa\cdot sina}{sina\, (\underbrace{sin^2a+cos^2a}_{1})}=cos^2acos^2a=cos^2a

mick65
4,8(46 оценок)

1) a²×(a-1)

2) 7b²-7b+5

3) 2ac-2bc

4) x × (6x²- 1 - 4x)

5) 3m²- 4m²n

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS