ZelyakAnna
06.12.2020 16:29
Алгебра
Есть ответ 👍

Cos x/2>корень из 3/2

182
197
Посмотреть ответы 1

Ответы на вопрос:

ALBERTALBERT2004
4,7(99 оценок)

(x^4 - 2x^3 + x^2)/(x^2 + x - 2) - (2x^3 + x^2 + x - 1)/(x + 2) <= 1.

Вынесем x^2 в числителе первой дроби:

x^2(x^2 - 2х + 1)/(x^2 + x - 2) - (2x^3 + x^2 + x - 1)/(x + 2) <= 1.

Разложим на множители x^2 - 2х + 1: по теореме Виета х1 + х2 = 2; х1 * х2 = 1. Корни равны 1 и 1. Получается x^2 - 2х + 1 = (х - 1)^2.

Разложим на множители x^2 + x - 2: по теореме Виета х1 + х2 = -1; х1 * х2 = -2. Корни равны -2 и 1. Получается x^2 + x - 2 = (х - 1)(х + 2).

Неравенство приобретает вид x^2(х - 1)^2/(х - 1)(х + 2) - (2x^3 + x^2 + x - 1)/(x + 2) <= 1.

Скобка (х - 1) сокращается, получается x^2(х - 1)/(х + 2) - (2x^3 + x^2 + x - 1)/(x + 2) <= 1.

Приводим к общему знаменателю: (x^2(х - 1) - (2x^3 + x^2 + x - 1))/(x + 2) <= 1;

(x^3 - х^2 - 2x^3 - x^2 - x + 1)/(x + 2) <= 1;

(-x^3 - 2х^2 - x + 1)/(x + 2) <= 1.

Переносим 1 в левую часть и приводим к общему знаменателю:

(-x^3 - 2х^2 - x + 1)/(x + 2) - 1 <= 0;

(-x^3 - 2х^2 - x + 1 - х - 2)/(x + 2) <= 0;

(-x^3 - 2х^2 - 2x - 1)/(x + 2) <= 0.

Вынесем (-1) из числителя и умножим неравенство на (-1):

-(x^3 + 2х^2 + 2x + 1)/(x + 2) <= 0;

(x^3 + 2х^2 + 2x + 1)/(x + 2) >= 0.

Разложим знаменатель на множители:

x^3 + 2х^2 + 2x + 1 = (x^3 + 1) + (2х^2 + 2x) = (х + 1)(х^2 - х + 1) + 2х(х + 1) = (х + 1)(х^2 - х + 1 + 2х) = (х + 1)(х^2 + х + 1).

Получается неравенство (х + 1)(х^2 + х + 1)/(x + 2) >= 0.

Решим неравенство методом интервалов:

Найдем корни неравенства:

х + 1 = 0; х = -1.

х^2 + х + 1 = 0; D = 1 - 4 = -3 (нет корней).

х + 2 = 0; х = -2.

Расставляем знаки неравенства: (+) -2 (-) -1 (+).

Так как неравенство имеет знак >= 0, то решением неравенства будут промежутки (-∞; -2] и [-1; +∞).

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS